
American Campus Tree Genomes
Release 0.1

Harkess A, Ficklin S

Jul 21, 2023

CONTENTS:

1 Course on Whole Genome Assembly and Annotation v0.1b 1
1.1 Introduction . 1
1.2 Course Setup . 6
1.3 Module 1: Plant Genomics . 13
1.4 Module 2: Planning a Genome Project . 33
1.5 Module 3: Genome Assembly . 63
1.6 Module 4: Genome Annotation . 105
1.7 Module 5: Comparative Genomics . 117
1.8 Module 6: Publishing Scientific Results . 119

i

ii

CHAPTER

ONE

COURSE ON WHOLE GENOME ASSEMBLY AND ANNOTATION V0.1B

DNA sequencing followed by whole-genome assembly and annotation is a critical first step for understanding the con-
nection between DNA and physical traits of individuals. The American Campus Tree Genomes (ACTG) project is
a national effort spearheaded by Alex Harkess of Auburn University and Hudson Alpha to provide a curriculum that
teaches new scientists, through hands-on experience, the computational steps for whole-genome assembly, annotation.
and scientific writing that culminates in a research-ready genome assembly, and a publishable manuscript for submis-
sion to a scientific journal. The project’s focus is on trees that are beloved within a region, state, or university campus,
but the course provides training that is applicable for any species. This document provides an implementation of the
ACTG curriculum. Students will assemble and annotate a genome for a tree species. Students will contribute content
to this manuscript and be included as co-authors on the final submitted manuscript.

1.1 Introduction

1.1.1 Learning Schedule

Warning: Details on this page not complete

Below is a recommended schedule for instructors teaching this course over a 15 week semester. Although instructors
can adapt this schedule to the needs of their students.

Self-Instruction

Schedule 1: Monday, Wednesday and Friday Meetings

Schedule 2: Tuesday and Thursday Meetings

1.1.2 Computational Requirements

Warning: Details on this page not complete

Requirements

The following indicates the necessary computational requirements to learn this course. Instructors and self-learners
can choose to learn using only the sample data provided for this course or with a new full genome. The requirements
for each will be different.

1

http://site.address.here
https://www.hudsonalpha.org/faculty/alex-harkess/

American Campus Tree Genomes, Release 0.1

For the Course Sample Data Only

Error: ADD DETAILS HERE

For a Full Genome

Error: ADD DETAILS HERE

Options

The following describes several ways to access the computational resources necessary for this course. Instructors are
encouraged to choose the method that best suits the needs of their students and the current compute infrastructure you
have available.

The course material will provide instructions throughout for usage of each of the following three options:

Praxis AI

This course is offered via a cloud-based service called Praxis AI. Instructors and students who do not have ecomputa-
tional resources onsite for students. Praxis AI integrates educational material with computational resources, conference
and collaboration services. The course requires a student fee, equivalent for a text book, for access to these services and
provides predictive costs for offering the course. Once the course is completed students can continue to access course
content via this site as a free reference.

Advantages

• Compute infrastructure is already available.

• You can upscale the amount of computing power as needed.

• Course material and compute are available within the same systems.

• Praxis AI is a great solution for instructors that do not have ready access to compute.

Limitations

• A fee is required, but at a rate similar to most textbooks.

• The base fee should cover the costs for teaching this course with the sample data but may not be sufficient for an
entire genome.

Workstations or Compute Cluster

For instructors and students with access to a high-performance workstations or an institutional compute cluster, we
have created Docker images that contain all of the necessary software required for this class. The Computational
infrastructure must have a Docker service or a Singularity service installed to use these images.

Note: A docker image is a minimal self-contained UNIX/Linux based-operating system pre-configured with a desired
set of software.

2 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

http://www.prxai.com/
https://www.docker.com/
https://docs.seylabs.io/guides/2.6/user-guide/index.html

American Campus Tree Genomes, Release 0.1

For learners that have access to an institutional compute cluster you may need to request installation of Singularity if it
is not already present.

Note: Instructors: while there are multiple job schedulers available for compute clusters, this course currently only
provides instructions for the SLURM scheduler. If your cluster does not use SLURM you may have to adapt the course
material to use the scheduler that your cluster provides.

Students: If you are self-training and you have access to a cluster but it does not use SLURM you will need to do a bit
of searching to find the corresponding commands for submitting and managing jobs on your cluster.

Advantages

• The software needed for the course is ready to go. No installation is required.

• You can use your own compute infrastructure.

• Students receive training on compute infrastructure they may be using for other purposes in the future.

• No extra costs. Use the compute you already have.

• Everyone uses the same software versions in the same environment despite working on different machines.

Limitations

• Unlike Praxis AI, the course material is not embedded in an interface along with the computational access.
Students must connect separately to their respective infrastructure.

• You must ensure that the compute power is sufficient for the course.

• A bit more time is required to train students to use Singularity and Docker.

Set it up Yourself

While Praxis AI and or the pre-configured Docker images make learning easiest, we recognize that some folks prefer
to learn the nitty-gritty of bioinformatics software installation. Within the lessons we will provide instructions.

Advantages

• Students learn how to install software.

Limitations

• It is more time consuming

• Students must have the ability to install software on the machine on which they work.

1.1.3 Software Requirements

This course requires a variety of software packages. To ensure students have as similar results to others, this course
will use specific versions of those software. The software, version and their purpose are provided below.

1.1. Introduction 3

American Campus Tree Genomes, Release 0.1

Software Version Purpose
R 4.1.3 A free software environment for statistical computing

and graphics.
FastQC 0.11.9 A quality control tool for high throughput sequence data.
MultiQC 1.13a MultiQC summarizes the output from numerous bioin-

formatics tools into a single report.
SRA Tools 2.11.0 A collection of tools and libraries for using data in the

INSDC Sequence Read Archives.
FastP 0.23.2 Provides fast all-in-one preprocessing for FastQ file.
SamTools 1.15.1 A suite of programs for interacting with high-throughput

sequencing data.
NOVOPlasty 4.3.1 A de novo assembler and heteroplasmy/variance caller

for short circular genomes.
BWA 0.7.17 A software package for mapping low-divergent se-

quences against a large reference genome.
Jellyfish 2.2.10 A tool for fast, memory-efficient counting of k-mers in

DNA.
Hifiasm 0.16.1 Hifiasm is a fast haplotype-resolved de novo assembler

for PacBio HiFi reads.
Mummer 3.23 Ultra-fast alignment of large-scale DNA and protein se-

quences.
BedTools 2.30.0 A swiss-army knife of tools for a wide-range of ge-

nomics analysis tasks.
RepeatMasker 4.1.2.p1 Screens DNA sequences for interspersed repeats and low

complexity DNA sequences
Braker2 2.1.6 Gene structural annotation.
BUSCO 4.1.2 Assesses genome assembly and annotation complete-

ness using single-copy orthologs.
EDTA 2.0.1 Automated whole-genome de-novo TE annotation and

benchmarking.
hic_qc git commit 6881c33 Performs QC Checks for Hi-C libraries using reads in

a BAM file aligned to the genome assembly. The ver-
sion of this software is a commit to the source repository
made on June 27, 2022.

1.1.4 Sample Data

Warning: Details on this page not complete

1.1.5 Course Resources

Warning: Details on this page not complete

• ACTG Slack Workspace. This courese provides a Slack workspace where students in active, concurrent courses
can interact by asking questions, sharing insight and working together to complete the course and assemble and
annotate a genome.

• ACTG Youtube Channel. Lecture videos from the lessons of this course are housed on this YouTube channel.

4 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://www.r-project.org/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://multiqc.info/
https://github.com/ncbi/sra-tools
https://github.com/OpenGene/fastp
http://www.htslib.org/
https://github.com/ndierckx/NOVOPlasty/
http://bio-bwa.sourceforge.net/
https://github.com/gmarcais/Jellyfish
https://github.com/chhylp123/hifiasm
http://mummer.sourceforge.net/
https://bedtools.readthedocs.io/en/latest/
https://www.repeatmasker.org/
https://github.com/Gaius-Augustus/BRAKER
https://busco.ezlab.org/
https://github.com/oushujun/EDTA
https://github.com/phasegenomics/hic_qc
https://actgcampustreegenomes.slack.com/
https://www.youtube.com/channel/UC8n0ZkDAciWYQE18MM-e_5A/videos

American Campus Tree Genomes, Release 0.1

• ACTG DockerHub Repository The docker images used for this course are housed in a public DockerHub repos-
itory.

• ACTG GitHub Repository The source code markup for this online document is maintained on this public GitHub
repository. Instructors who wish to contribute may clone this repository, edit content and push their changes as
pull requests.

1.1.6 History

Warning: Details on this page not complete

Active instruction of this course occurred for the following genomes

Course Versions

As this course is updated new versions will be assigned.

• Version 0.1b (current)

• Version 0.1a The first implementation of this course. First offered in 2021 at Auburn University by Alex Harkess.

Assembled Genomes

The following genomes have been (or are being) assembled by students of this course.

Malus x domestica WA38 (Cosmic Crisp © apple)

Institution Washington State University, Pullman WA.
Instructors Huiting Zhang, Stephen Ficklin
Course Number HORT 503
When Fall Semester
Course Version v0.1b

Pyrus communis Anjou Pear

Institution Auburn University, Auburn AL.
Instructors Alex Harkess
Course Number CSES 7120
When Fall Semester
Course Version v0.1b

1.1. Introduction 5

https://github.com/actg-course/wgaa
https://www.auburn.edu/
http://www.wsu.edu
https://www.auburn.edu/

American Campus Tree Genomes, Release 0.1

Official Offerings in 2021

Quercus virginiana Toomers (Live Oak)

Institution Auburn University, Auburn AL.
Instructors Alex Harkess
Course Number CSES 7120
When Fall Semester
Course Version v0.1a

1.1.7 How to Contribute

This is an open-source developed course. Others are welcome to contribute updates to the material.

Warning: Add instructions here for how someone can contribute content to this course. What are the rules, how
is it reviewed, etc.

About the “Restructured Text” Format

The material for this course is written in an easy to read and write Restructured Text markdown format. To provide
edits or comments please review the Users Guide for instructions about this format.

1.1.8 Need Help?

Warning: Add information here about how instructors or students can get help if the instructions provided here
don’t work.

1.2 Course Setup

This course will require both computational infrastructure and software to complete. Choose from one of the infras-
tructure types for this course described in the following sections. Depending on the selection you make, you may or
may not have to install software. Instructions for installing the necessary software are provided.

1.2.1 Computational Infrastructure

The following provides instructions for setup of this course on computing resources. Choose the method that best suits
your needs or those of your students.

If you have an instructor for this course, the instructor will advise you on the appropriate option to use and these
instructions will serve as a reference for you.

6 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://www.auburn.edu/
https://en.wikipedia.org/wiki/ReStructuredText
https://docutils.sourceforge.io/rst.html

American Campus Tree Genomes, Release 0.1

Setup for Praxis AI (Cloud-Based)

Setup on a SLURM Cluster

Setup for a Stand-Alone Workstation Using Docker

Setup for a Stand-Alone Workstation Without Docker

1.2.2 Software Installation and Usage

The following sections provide instructions for how to prepare your computational infrastructure for this course. Choose
the method that is most appropriate for your computational infrastructure.

If you have an instructor for this course, the instructor will advise you on the appropriate option to use and these
instructions will serve as a reference for you.

Note: To ensure that all students have as similar experiences as possible, these instructions specify software versions.
If you install your own softwwre be sure to use the version numbers specified for the course to ensure your results match
as closely to those shown.

Software Installation: Praxis AI

If you are using Praxis AI for this course you will be instructed to install individual software as you need it using conda.
Conda makes software installation easy. You’ll use a similar set of commands to install everything. See the example
for how to find a package and install it on the Software Installation: Conda page.

Software Installation: Conda

Conda Installation

Conda is a package manager which is amazingly powerful and simple to use. If conda is not already on your compute
infrastructure, and if you have permission to install software, then the easiest way to get conda is to install Anaconda.
You can find a variety of Anaconda installation instructions for different computational platforms here

If you do not have permission to install Anaconda (or other Conda provider) then work with your systems administrator
to get conda available.

Quick How-To

There is an entire collection of biology-related software that has been deposited into a “channel” of conda called
bioconda. Check out all the available software packages you can install at the bioconda package repository — more
than 7,000 and growing.

As a quick example for how to install software using Conda. Search in the bioconda repository for a program called
fastqc. The website shows us exactly how to install the program:

1.2. Course Setup 7

https://www.anaconda.com/products/distribution
https://docs.anaconda.com/anaconda/install/
https://anaconda.org/bioconda/repo

American Campus Tree Genomes, Release 0.1

To install it run the conda install command as shown on the site:

conda install -c bioconda fastqc

You’ll probably get a message asking if you want to install some other dependencies (other programs that fastqc relies
on). It will look like this:

Proceed ([y]/n)?

Note: Often when you see messages like this in UNIX-based operating system, the brackets around [y] mean that if
you just press enter, it will assume you mean “yes”. In other words, [y] is the default assumed response.

Did it work? Run fastqc with the -h (help) flag and see:

fastqc -h

8 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

Base Software Installation

This course uses a variety of software packages listed on the Software Requirements page. Rather than install them all
we will use an environment file to install them with conda. To do this, create a new file named base.enrivonment.
yml. And add the following contents:

channels:
- conda-forge
- bioconda
- defaults

dependencies:
- conda-forge::r-base=4.1.3
- bioconda::fastqc=0.11.9
- bioconda::multiqc=1.13a
- bioconda::sra-tools=2.11.0
- bioconda::fastp=0.23.2
- bioconda::samtools=1.15.1
- bioconda::bwa=0.7.17
- bioconda::jellyfish=2.2.10
- bioconda::hifiasm=0.16.1
- bioconda::mummer=3.23
- bioconda::bedtools=2.30.0
- bioconda::repeatmasker=4.1.2.p1

The contents above are in YAML format and are instructions that can be used by conda to perform bulk installation of
software. The following explains the meaning of the elements of the file:

• name: tells conda what the name of the environment is. You will use this name to access the software after
installation.

• channels: tells conda what online repositories to use to find software

• dependencies: lists the software that should be installed. The list includes the name of the channel (e.g.
bioconda), the software name, and a specific version to install.

You can install all of these software into the “base” environment with this command:

conda env update --quiet -n base -f /base.environment.yml

Additional Software Installation

Some of the software tools are not part of the “base” environment because they work best in their own self-contained
environment. You can install the remaining software in this way:

Braker2

Step 1: Create the following YAML file named braker.environment.yml

name: braker
channels:
- conda-forge
- bioconda
- defaults

(continues on next page)

1.2. Course Setup 9

https://en.wikipedia.org/wiki/YAML

American Campus Tree Genomes, Release 0.1

(continued from previous page)

dependencies:
- anaconda::perl
- bioconda::perl-app-cpanminus
- bioconda::perl-hash-merge
- bioconda::perl-parallel-forkmanager
- bioconda::perl-scalar-util-numeric
- bioconda::perl-yaml
- bioconda::perl-class-data-inheritable
- bioconda::perl-exception-class
- bioconda::perl-test-pod
- anaconda::biopython
- bioconda::perl-file-which
- bioconda::perl-mce
- bioconda::perl-threaded
- bioconda::perl-list-util
- bioconda::perl-math-utils
- bioconda::cdbtools
- bioconda::braker2=2.1.6

Step 2: Create the new braker environment

conda env create --quiet -f braker.environment.yml

Step 3: When you want to run braker run the following to enable the environment and then run any of the braker
programs:

conda activate braker
braker.pl

You can use any of the software in the base environment by switching back:

conda activate base

EDTA

Step 1: Create the following YAML file named edta.environment.yml

name: edta
channels:
- conda-forge
- bioconda
- defaults

dependencies:
- bioconda::edta=2.0.1

Step 2: Create the new braker environment

conda env create --quiet -f edta.environment.yml

Step 3: When you want to run EDTA run the following to enable the environment and then run any of the EDTA
programs:

10 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

conda activate edta
EDTA.pl

You can use any of the software in the base environment by switching back:

conda activate base

BUSCO

Step 1: Create the following YAML file named busco.environment.yml

name: busco
channels:
- conda-forge
- bioconda
- defaults

dependencies:
- bioconda::busco=4.1.2

Step 2: Create the new BUSCO environment

conda env create --quiet -f busco.environment.yml

Step 3: When you want to run BUSCo run the following to enable the environment and then run any of the BUSCO
programs:

conda activate busco
busco

You can use any of the software in the base environment by switching back:

conda activate base

Software Usage: Docker

This course provides a pre-configured Docker image containing all of the software. This means you do not have to install
any software on your computational infrastructure! You can use this image if you have either Docker or Singularity
installed. If you have permission to install software on your infrastructure you may need to install either Docker or
Singularity. If not, work with your systems administrator.

Note: Docker requires root (or administrative) access to the machine. Thus it is often not available on an institutional
compute cluster. Singularity, however, does not and is often used in cases where root access is not given to end-users.

1.2. Course Setup 11

https://en.wikipedia.org/wiki/Docker_(software)
https://docs.sylabs.io/guides/3.5/user-guide/introduction.html

American Campus Tree Genomes, Release 0.1

Docker or Singularity Installation

• If you want to install Docker you can find installation instructions here.

• If you want to install Singularity you can find installation instructions here:

How to Run Software with Docker

If you use Docker, anytime software is referenced in this course you can run it by following this example:

docker run -v ${PWD}:/work -u $(id -u ${USER}):$(id -g ${USER}) \
systemsgenetics/actg-wgaa:0.1 <command>

Note: The backslash character \ at the end of the first line tells the UNIX command-line that your instruction spans
more than one line. This is not necessary but makes it easier to read and cut-and-paste from documentation!

The following is the meaning of each component in that command:

• The -v ${PWD}:/work argument instructs Docker to include the current directory on your current machine as
a new directory inside of the image and available at the path /work.

• The Docker image is named systemsgenetics/actg-wgaa:0.1 and Docker will download it if you’ve never
used that image before. So be patient the first time you run the command.

• The -u $(id -u ${USER}):$(id -g ${USER}) argument instructs Docker to run any commands in the im-
age as your local account on the UNIX system you are using.

• Replace the <command> placeholder with the exact command you want to run.

As an example, you can print out the version of R installed with the following:

docker run -v ${PWD}:/work -u $(id -u ${USER}):$(id -g ${USER}) \
systemsgenetics/actg-wgaa:0.1 R --version

How to Run Software with Singularity

If you use singularity, anytime software is referenced in this course you can run it using Singularity by following this
example:

singularity exec -B ${PWD}:/work docker://systemsgenetics/actg-wgaa:0.1 <command>

The following is the meaning of each component in that command:

• The -v ${PWD}:/work argument instructs Docker to include the current directory on your current machine as
a new directory inside of the image and available at the path /work.

• The Docker image is named systemsgenetics/actg-wgaa:0.1 and Singularity will download it if you’ve
never used that image before. So be patient the first time you run the command. So be patient the first time you
run the command.

• Replace the <command> placeholder with the exact command you want to run.

As an example, you can print out the version of R installed with the following:

12 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://docs.sylabs.io/guides/3.5/user-guide/introduction.html
https://docs.sylabs.io/guides/3.10/admin-guide/installation.html

American Campus Tree Genomes, Release 0.1

singularity exec -B ${PWD}:/work docker://systemsgenetics/actg-wgaa:0.1 R --version

How to Run Docker in Interactive Mode

The instructions in the previous sections described how to run software in a Docker image directly on the command-
line. However, if you like, you can enter inside of the image an use the command-line terminal as if it were a stand-alone
machine.

Interactive Mode with Docker

To run software for this course in Docker in interactive mode use the following command to enter the image and then
change into the work folder.

docker run -it -v ${PWD}:/work -u $(id -u ${USER}):$(id -g ${USER}) \
systemsgenetics/actg-wgaa:0.1 /bin/bash

cd work

Interactive with Singularity

To run software for this course in Singularity in interactive mode use the following command to enter the image and
then change into the work folder.

singularity shell -B ${PWD}:/work docker://systemsgenetics/actg-wgaa:0.1

cd work

1.3 Module 1: Plant Genomics

1.3.1 Lesson 1: Introduction to Plant Genomics

1.1 Instructions

1.1 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

• Linux Survival

• Linux Cheat Sheet

1.3. Module 1: Plant Genomics 13

https://linuxsurvival.com/linux-tutorial-introduction/
https://cheatography.com/davechild/cheat-sheets/linux-command-line/

American Campus Tree Genomes, Release 0.1

1.1 Lesson

Learning Objectives

Vocabulary

Learning Material

Error: EMBED LECTURE VIDEO HERE

Error: ADD TEXT TRANSCRIPTION OF VIDEO HERE

1.1 Lab Exercises

Overview

In this lab, we will get familiar with our new Virtual Machine (VM) terminal. If you’ve got unix and command line
experience, great! If you don’t, or it’s been a while, don’t stress. Think of this VM like a personal sandbox. It’s yours,
it never goes away, and you can’t break anything (too badly).

We will do four major things in this lab:

• Get familiar with your new VM

• Learn some basic unix commands: ls, cd, mkdir, pwd

• Download a genome from TAIR

• Explore that genome with grep

Give it a go, be patient, and ask questions.

“Roads were made for journeys, not destinations” - Confucius

Task A: Get comfortable on the command line

Step 1. Where am I?

Help! I’m lost! Where am I? The UNIX command pwd is your lighthouse.

pwd

If this tree-like directory structure doesn’t make sense, stop and review Module 1 of LinuxSurvival

Use ls to list the files in your current directory:

ls

Add a “flag” to ls to see more information about every file. -l stands for “long format”.

ls -l

14 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://linuxsurvival.com/linux-tutorial-introduction/

American Campus Tree Genomes, Release 0.1

What are all the flags you can use for a given command? Read the manual for every UNIX command by using the man
command:

man ls

Step 2. Make a new directory for this lab

We use mkdir to make a new directory (folder). The usage is two parts:

mkdir <dirname>

Replace <dirname> with what you want to call this directory. Make sure it is is one word, no spaces. I’ll use “Lab1”
but organize your life however you’d like to.

mkdir Lab1

There’s a nice trick we can use to speed up our command line life, called tab completion. The tab key is your best
friend in UNIX; it is similar to how Google will try and autocomplete text for you while you’re typing into the search
bar. If you start typing a filename in UNIX, and press the tab key, UNIX will try to complete the filename or path for
you as long as it is unique.

We want to change directories into Lab1 now using the cd command, but we also want to be lazy. We could type out
the full command:

cd Lab1

Or, we could just type:

cd La

and then press the tab key to complete the word. Try it, and press enter to execute the cd command.

Did it work? Use pwd to see where you are.

This trick works with just about anything you’re typing, like programs, filenames, scripts, and commands.

Task B: Download the Arabidopsis thaliana genome from TAIR

Arabidopsis is a powerful model for plant biology. It is not perfect, and is not useful in every situation. After all,
there are >300,000 species of land plants on the planet, so how could one species possibly be useful to understanding
another?

Step 1. Download the genome for Arabidopsis thaliana

The unix command wget allows us to fetch data from servers. Not every UNIX command means something, but wget’s
name is derived from World Wide Web + get = wget. Here’s how we use it:

wget https://www.arabidopsis.org/download_files/Genes/TAIR10_genome_release/TAIR10_
→˓chromosome_files/TAIR10_chr_all.fas

That’s it, just two parts: wget [path-to-what-we-want-to-fetch]

1.3. Module 1: Plant Genomics 15

American Campus Tree Genomes, Release 0.1

Fig. 1: Image source: Plantlet.org, Credit: Eric Belfield

16 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

Step 2. Let’s see what the genome looks like

Use the command less to open up the FASTA file:

less TAIR10_chr_all.fas

This is what FASTA format looks like. FASTA format contains two major parts:

1. A header that starts with “>” and includes information about

2. The sequence on the next line(s). Sometimes the header can have information about the chromosome number
(as you see here). Other genomes are not so perfect, and might be in hundreds or thousands of pieces.

Just like in Microsoft Word, you can use another UNIX program to find words or characters. This is really helpful if
we just want to look at every line that has a FASTA header with the “>” character.

grep ">" TAIR10_chr_all.fas

The Arabidopsis genome is incredibly high quality, since people have been improving it for nearly 20 years. You should
see FASTA headers for 5 nuclear chromosomes, one chloroplast genome, and one mitochondrial genome.

Step 3. View gene annotation sequences in a FASTA file

Use your new set of UNIX vocabulary to download the peptide sequences for Arabidopsis. Here’s the link:

https://www.arabidopsis.org/download_files/Sequences/Araport11_blastsets/Araport11_genes.
→˓202106.pep.fasta.gz

This file ends in “.gz”. This means that it is compressed using a program called gzip. This is a very common and nifty
compression tool, just like .zip files on Windows and MacOS. To decompress this file, all we need to do is:

gzip -d filename

The -d flag means “decompress”. What if we want to compress something?

gzip filename

Mastering Content

Step 1

Count the number of genes in the Arabidopsis peptide fasta file.

Hint: You know how to use grep now. Is there a flag you can add to grep that will count things for you? Use man
and/or Google. If you get stuck, rely on your colleagues, friends, and classmates in the discussion forum — this is real
life, after all.

1.3. Module 1: Plant Genomics 17

https://www.gnu.org/software/gzip/

American Campus Tree Genomes, Release 0.1

Step 2

Plants have canonical repeat motifs at their telomeres, usually “CCCTAAA” for most monocots and eudicots (side note:
monocots in the Asparagales order often have “CCCTAA” telomere repeats, like humans).

Count the number of times that the string “CCCTAAA” occurs in the genome fasta file. Is this a robust way to measure
of the length of telomeres in Arabidopsis?

1.3.2 Lesson 2: Introduction to Biological Computing

1.2 Instructions

1.2 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

• Conda and Bioconda

• Conda CheatSheet

1.2 Lesson

Learning Objectives

Vocabulary

Learning Material

Error: EMBED LECTURE VIDEO HERE

Error: ADD TEXT TRANSCRIPTION OF VIDEO HERE

1.2 Lab Exercises

Overview

In this lab, we will learn how to Conda, a package manager which makes installing and running software very simple.

We will do three major things in this lab:

• Download and install fastqc with conda

• Download some Illumina data from SRA

• Run fastqc on the raw Illumina data

Give it a go, be patient, and ask questions.

“I am not discouraged, because every wrong attempt discarded is another step forward.” - Thomas Edison

18 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://www.youtube.com/watch?v=x4IghzGI_6Y
https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c689e0bc00ca/conda-cheatsheet.pdf

American Campus Tree Genomes, Release 0.1

Task A: Download and run FASTQC

Step 1. Use Conda to install a package

Conda is amazingly powerful and simple to use. There is an entire collection of biology-related software that has been
deposited into a “channel” of conda called bioconda. Check out all the available software packages you can install at
the bioconda package repository — more than 7,000 and growing.

Search for a program called fastqc. The website shows us exactly how to install the program:

I usually just google something like “conda fastqc” and it’s always the first result. Now install it, just like the website
says:

conda install -c bioconda fastqc

You’ll probably get a message asking if you want to install some other dependencies (other programs that fastqc relies
on). It will look like this:

Proceed ([y]/n)?

Whenever you see messages like this in unix, the brackets around [y] mean that if you just press enter, it will assume
you mean “yes”. In other words, [y] is the default assumed response.

Did it work? Run fastqc with the -h (help) flag and see:

PraxisAI

1.3. Module 1: Plant Genomics 19

https://anaconda.org/bioconda/repo

American Campus Tree Genomes, Release 0.1

fastqc -h

Stand-alone

fastqc -h

Singularity

singularity exec -B ${PWD} docker://systemsgenetics/actg-wgaa:0.1 \
fastqc -h

Docker

docker run -v ${PWD} -u $(id -u ${USER}):$(id -g ${USER}) systemsgenetics/actg-wgaa:0.1 \
fastqc -h

Help

Here you find, on several different tabs, the command-line instruction to execute this step of the lab on your computa-
tional infrastructure. Depending on how this course has been setup the instruction will vary. Please see the Computa-
tional Requirements page for information. If you are unsure which instruction to use contact your instructor.

Step 2. Download some Illumina data

How do we store sequencing data? NCBI’s Sequence Read Archive (SRA) is the dominant repository for sequencing
data. It is free to use in every sense: free to upload data, free to download data, free to explore. Let’s start at the main
SRA page. I got here just by Googling “NCBI SRA”.

Search for data from one of my favorite plant species, Spirodela polyrhiza, otherwise known as a duckweed. Find one
of the entries that says “WGS duckweed”. WGS means “Whole Genome Shotgun”, as in randomly sequenced DNA
from the genome. I picked this one: https://www.ncbi.nlm.nih.gov/sra/SRX9007723[accn]

Look through the whole SRA page; there is a lot of metadata attached to this sample.

20 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://www.ncbi.nlm.nih.gov/sra/

American Campus Tree Genomes, Release 0.1

We know what machine the data was sequenced on (HiSeq 2000), that this is WGS Whole Genome Shotgun (as opposed
to e.g. amplicon sequencing or RNA-seq), that this comes from Genomic DNA, and that the data are paired-end
(meaning two reads per spot on the flow cell). Click on the SRR Run for more info and a preview of the data.

For Illumina sequencing, paired-end means that each DNA molecule was sequenced from both ends, producing two
reads per spot/molecule. We will cover this more in the coming weeks, but here’s a visualization of the DNA fragment
(grey), sequence read 1 (orange), and sequence read 2 (blue).

If you want to learn more, watch this short 5 minute video on Illumina Sequencing-by-Synthesis

The data we really need is the SRR number that specifies the run. Luckily, NCBI has written some software tools called
sra-tool that allow us to quickly download data from SRA once we know this SRR number.

Use conda to install sra-tools on your own, then make a new directory for this lab. Name it whatever you want, but
stay consistent so that your labs are organized and your home directory is not super cluttered. If you ca not remember
how to make a new directory, go back to the UNIX cheat sheet in the Lesson 1 Resources.

Usually we would download the entire dataset. For this lab, we’ll just download 20 million read pairs from this dataset
to save time. Check out the options for fastq-dump using the -h flag. This admittedly is not the best documented
software, and some of the options are pretty confusing. For data that is paired-end, we need to add the –split-files
flag.

To download this paired-end Illumina data, copy/paste the SRR number into the fastq-dump command:

PraxisAI

fastq-dump -X 20000000 --split-files SRR12517164

Stand-alone

1.3. Module 1: Plant Genomics 21

American Campus Tree Genomes, Release 0.1

Fig. 2: Image Source: Illumina Website

fastq-dump -X 20000000 --split-files SRR12517164

Singularity

singularity exec -B ${PWD} docker://systemsgenetics/actg-wgaa:0.1 \
fastq-dump -X 20000000 --split-files SRR12517164

Docker

docker run -v ${PWD} -u $(id -u ${USER}):$(id -g ${USER}) systemsgenetics/actg-wgaa:0.1 \
fastq-dump -X 20000000 --split-files SRR12517164

Help

Here you find, on several different tabs, the command-line instruction to execute this step of the lab on your computa-
tional infrastructure. Depending on how this course has been setup the instruction will vary. Please see the Computa-
tional Requirements page for information. If you are unsure which instruction to use contact your instructor.

Great! Well, mostly. We’re twiddling our thumbs now since this program is running and we can’t use the command
line. Let’s shove this job into “the background” so we can use our command line again. Press “Control + Z” to pause
the job, and then push the job into the background using bg.

bg

Now we’ve got our command line back. We can see what jobs are running in the background using jobs:

22 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/paired-end-vs-single-read.html

American Campus Tree Genomes, Release 0.1

jobs

See how it displays the fastq-dump command you entered? This job is now running “in the background”. The amper-
sand at the end (&) is a nifty thing. We could have saved ourselves some time by running the fastq-dump command
with an ampersand & at the end, which would automatically start the job in the background.

Data transfer from SRA is not blazing fast, though. Check on the progress of your data transfer using:

ls -lhrt

You can mix and match multiple flags onto UNIX commands. Let’s break this one down:

ls = list all the files in my current directory

• -l = long format (show permissions, date last touched)

• -h = human readable file sizes. I like this option because it shows me 2G instead of 2000000 for the file size.
K=kilo, M=mega, G=giga, T=tera.

• -t = sort the files by the time of their last modification

• -r = reverse the order, putting the “newest” files at the bottom. These last two options, -rt, make it really quick to
see how much of your file has been downloaded. It’s especially nice when you have a lot of files in one directory.

Step 3: Look at our fastq files

We have two files that end in .fastq in our directory. They differ in a small but important way: _1.fastq and _2.
fastq. These two files belong to the same sequencing run, and represent read1 (_1.fastq) and the read2 (_2.fastq)
for every single sequenced molecule. We’ll talk more about fastq format soon, but go ahead and look at the files. You
can quickly look at the first few lines of a file using head.

head SRR12517164_1.fastq

Illumina describes the fastq file as:

For each cluster that passes filter, a single sequence is written to the corresponding sample’s R1 FASTQ file, and, for a
paired-end run, a single sequence is also written to the sample’s R2 FASTQ file. Each entry in a FASTQ files consists
of 4 lines:

1. A sequence identifier with information about the sequencing run and the cluster. The exact contents of this line
vary by based on the BCL to FASTQ conversion software used.

2. The sequence (the base calls; A, C, T, G and N).

3. A separator, which is simply a plus (+) sign.

4. The base call quality scores. These are Phred +33 encoded, using ASCII characters to represent the numerical
quality scores.

Now we’ve got data and we’ve got fastqc installed. Let’s run fastqc.

1.3. Module 1: Plant Genomics 23

https://support.illumina.com/bulletins/2016/04/fastq-files-explained.html
https://support.illumina.com/content/illumina-marketing/en/science/technology/next-generation-sequencing/plan-experiments/quality-scores.html
http://drive5.com/usearch/manual/quality_score.html

American Campus Tree Genomes, Release 0.1

Task B: Run FASTQC and assess the quality of some Illumina shotgun data

FASTQC is a simple program that allows us to objectively measure some statistics about a sequencing run. From the
FASTQC github page:

“FastQC is a program designed to spot potential problems in high througput sequencing datasets. It runs
a set of analyses on one or more raw sequence files in fastq or bam format and produces a report which
summarizes the results.”

Step 1: Check out the help options for fastqc

PraxisAI

fastqc -h

Stand-alone

fastqc -h

Singularity

singularity exec -B ${PWD} docker://systemsgenetics/actg-wgaa:0.1 \
fastqc -h

Docker

docker run -v ${PWD} -u $(id -u ${USER}):$(id -g ${USER}) systemsgenetics/actg-wgaa:0.1 \
fastqc -h

Help

Here you find, on several different tabs, the command-line instruction to execute this step of the lab on your computa-
tional infrastructure. Depending on how this course has been setup the instruction will vary. Please see the Computa-
tional Requirements page for information. If you are unsure which instruction to use contact your instructor.

FastQC looks pretty straightforward to run, right? From the help menu, all we need to run this program is to list our
sequence files.

PraxisAI

fastqc seqfile1 seqfile2 .. seqfileN

Stand-alone

fastqc seqfile1 seqfile2 .. seqfileN

Singularity

singularity exec -B ${PWD} docker://systemsgenetics/actg-wgaa:0.1 \
fastqc seqfile1 seqfile2 .. seqfileN

Docker

docker run -v ${PWD} -u $(id -u ${USER}):$(id -g ${USER}) systemsgenetics/actg-wgaa:0.1 \
fastqc seqfile1 seqfile2 .. seqfileN

24 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://github.com/s-andrews/FastQC

American Campus Tree Genomes, Release 0.1

Help

Here you find, on several different tabs, the command-line instruction to execute this step of the lab on your computa-
tional infrastructure. Depending on how this course has been setup the instruction will vary. Please see the Computa-
tional Requirements page for information. If you are unsure which instruction to use contact your instructor.

Give it a shot — run fastqc on both of your fastq files.

Step 2: Download the results

PraxisAI is nifty because it also has a way to download data built-in. I marked two arrows here on how to download
data from this server to your own local computer.

Download both of the *fastqc.zip files to your own computer (right click, download), unzip them and open them
up. We’ll talk about these together in class.

Mastering Content

Step 1: Conda environments

A good tip with conda is to keep your default (base) environment clean, and to create new environments that con-
tain your installed software. You can make as many environments as you’d like. For example, I have one called
“pb-assembly” that contains all software related to PacBio genome assembly, annotation, and quality control. I have
another environment called “chloroplast” that contains all software I need related to chloroplast genome assembly and
annotation.

Your tasks are to:

1. Create a new conda environment called “toomers”

2. Activate the new environment

3. List all of your current environments

4. Switch your environment back to default (base)

5. Switch your environment back to toomers

Step 2: Messy data

The duckweed whole genome shotgun data we investigated with fastqc looks really clean, meaning it has high quality
scores along the length of both reads, and very little adapter contamination, among other things. What about something
a little messier?

Here is the SRA page for small RNA (sRNA) reads from garden asparagus (Asparagus officinalis). These are single-
end, 50 nt long reads. Small RNAs are typically 18-25 nt pieces of RNA. What happens when the molecule you’re
sequencing is shorter than the read length of the machine?

https://www.ncbi.nlm.nih.gov/sra/SRX8241476[accn]

Run fastqc on this Asparagus officinalis sRNA data and see for yourself, then let’s talk about this in class together.
Give this guide on fastqc output a read-through.

1.3. Module 1: Plant Genomics 25

https://hbctraining.github.io/Intro-to-rnaseq-hpc-salmon/lessons/qc_fastqc_assessment.html

American Campus Tree Genomes, Release 0.1

Fig. 3: Image Source: Illumina Website

Step 3: Compression

Right now we have lots of .fastq files sitting around, taking up space. Use the gzip compression algorithm to compress
all of them.

ls *.fastq
gzip *.fastq

The asterisk * is a wildcard. See how it works by using ls *.fastq. It lists every file that ends in .fastq. Nifty!
Unix is all about being lazy (other people call this “efficiency”).

1.3.3 Lesson 3: Compute Clusters and Programming Languages

1.3 Instructions

1.3 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

• Ten simple rules for biologists learning to program

• An Introduction to Computing Clusters

• For bioinformatics, which language should I learn first

26 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://support.illumina.com/bulletins/2016/04/adapter-trimming-why-are-adapter-sequences-trimmed-from-only-the\T1\textendash {}ends-of-reads.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5754048/
https://www.youtube.com/watch?v=7zJUceJiYxQ
https://www.youtube.com/watch?v=ZZz9HROAONA

American Campus Tree Genomes, Release 0.1

1.3 Lesson

Learning Objectives

Vocabulary

Learning Material

1.3 Lab Exercises

Overview

In this lab, we will learn how to organize our project, then write and run a loop in bash.

We will do four major things in this lab:

• Organize our data and the project

• Make symbolic links to raw data

• Write a bash loop

• Run fastqc in a bash loop

Give it a go, be patient, and ask questions.

“Some people feel the rain. Others just get wet.” Bob Dylan

Task A: Organize your directories and clean up

Step 1. Project organization

First, let’s talk a little about data management and organization. Do you have a lot of files in your home directory? Is it
cluttered? Clean up! Delete things you don’t need anymore (using the rm command, carefully. Remember: Once it’s
gone, it’s gone for good).

Today we’re going to start our first analysis on the Toomer’s Oak data by touching the raw Illumina data, so let’s go
over some best practices in project management. Keep everything organized! Create a new directory called “toomers-
genome” in your home directory, as well as four directories within, to represent the 4 major data types we’ll be gener-
ating.

This quickly gets you to your home directory
cd ~

mkdir toomers-genome
cd toomers-genome

We can make multiple directories at once with the mkdir
mkdir shotgun-dna rna-seq pacbio hi-c

Note: The pound sign / hashtag is the universal symbol for leaving a comment in a piece of code. Interpreted languages
(like bash, perl, python) ignore any line that starts with #. Annotate your scripts, and leave yourself notes, using this
symbol! treat your code like your lab notebook.

1.3. Module 1: Plant Genomics 27

American Campus Tree Genomes, Release 0.1

Change directory into shotgun-dna. Then make two more directories called raw-data and fastqc. Your directory
structure should look like this:

I used the tree command to make this directory tree.

If you’re struggling to make directories and move around, or if this tree-like structure of directories doesn’t make sense,
be sure to review modules 1 and 2 of Linux Survival.

Step 2: Create symbolic links to the data

We don’t want to mess with the raw data in the shared directory, so we can create a symbolic link (or softlink) to the
data. A soft link is a special kind of file that points to another file, much like a shortcut in Windows or a Macintosh
alias. After you’ve made the symbolic link, you can perform an operation on or execute “myfile”, just as you could
with the source_file. You can use normal file management commands (for example, cp, rm) on the symbolic link.

To create a symbolic link in Unix, we type:

ln -s source_file myfile

• source_file: what we want to make a link to

• myfile: the name of the softlinked file you want to make in your current directory. I would suggest keeping this
the same as the source_file name.

Our shared class data is held in /scratch/ . We never want to mess with this data directly — but we can create
softlinks to it! There are two .fastq.gz files in there right now, representing ~100X coverage of an Illumina whole
genome shotgun, paired-end 150 nt sequencing library.

cd ~/toomers-genome/shotgun-dna/raw-data
ln -s /scratch/JLGI_PCRfree_1_1_GGTACCTT_Quercus_virginiana_Toomers_I1126_L4_R1.fastq.gz␣
→˓JLGI_PCRfree_1_1_GGTACCTT_Quercus_virginiana_Toomers_I1126_L4_R1.fastq.gz
ln -s /scratch/JLGI_PCRfree_1_1_GGTACCTT_Quercus_virginiana_Toomers_I1126_L4_R2.fastq.gz␣
→˓JLGI_PCRfree_1_1_GGTACCTT_Quercus_virginiana_Toomers_I1126_L4_R2.fastq.gz

Now we’re organized, and we’ve got softlinks to our raw data.

28 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://linuxsurvival.com/linux-tutorial-introduction/

American Campus Tree Genomes, Release 0.1

1.3.4 Lesson 4: Writing a Scientific Manuscript

1.4 Instructions

1.4 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

• Oak genomics is providing its worth

• Pecan genome

• How to write an abstract

1.4 Lesson

Learning Objectives

Vocabulary

Learning Material

1.4 Lab Exercises

Overview

In this lab, we will learn how to write parts of a manuscript as we go along. In cooking, we say “clean as you cook”,
and you will not be left with a giant pile of dishes at the end. The same thing applies for genomics. Keep your eye on
the prize: hypothesizing, experimenting, performing, and publishing the highest quality science you can, that tells a
well-supported story based on the information you have.

There are also a lot of annoying things that we have to deal with: aggregating citations, aggregating results from major
analyses.

We will do four major things in this lab:

• Learn to work with Google Docs

• Learn how to add citations using Paperpile

• Create the skeleton of our genome manuscript

• Fill in basic stats about our data using MultiQC

“If everything was perfect, you would never learn and you would never grow.” -Beyoncé

1.3. Module 1: Plant Genomics 29

https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.16560
https://www.nature.com/articles/s41467-021-24328-w.pdf
http://www.cbs.umn.edu/sites/default/files/public/downloads/Annotated_Nature_abstract.pdf

American Campus Tree Genomes, Release 0.1

Task A

Step 1: Get comfortable with Google Docs and Paperpile

The end goal of our course is to write a manuscript that details the genome assembly and a variety of analyses for the
Toomer’s Oak. Writing a manuscript has changed a lot in the last decade. Back then, you used to email a Microsoft
Word document back and forth between authors. Thankfully, those days are gone.

There are several ways to collaborate online. Microsoft Teams, Dropbox, Overleaf, and my personal favorite: Google
Docs. A key reason I am fan of Google Docs is its ability for multiple people to work on the same document at once,
the amount of control you as an author have, and the ability to integrate with third-party plug-ins that make your life
easier.

Check with your instructor for the Google Doc link to the manuscript. Below is an example screenshot from a previous
class.

Poke around the Google Doc. The two main features we’ll use in this class are 1) making a comment (Insert ->
Comment) and 2) making a suggestion (View -> Mode -> Suggesting). Make sure you know how to do both.

Step 2: Insert a citation with PaperPile

My #1 advice with writing a scientific manuscript on Google Docs is, just like with coding, don’t be a glutton for
punishment. There are tools that exist to make your life easier. USE THEM. Managing citations is one of those
annoyances. Imagine you have a manuscript ready to submit, and you’ve painstakingly curated all of the 75 citations
in the text. You used superscripts (e.g. “Plant Genomes can be quite large3“). Your adviser makes a suggestion and
wants you to add an extra citation in the middle of the manuscript. Do you A) scream, or B) re-do all of the citations
by hand?

Just like we Conda as a package manager to help us install software, there are citation managers we can use to help us

30 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

insert and edit citations using large manuscript databases (e.g. PubMed, Google Scholar), and automatically populate
reference lists that meet formatting criteria for different journals. Some common examples are Mendeley, Zotero, and
PaperPile. For this course, we’ll use Paperpile – it integrates with Google Docs, has an Ipad app, and works on every
browser.

Fig. 4: My PaperPile database with 603 papers in it. I should read more papers!

If you haven’t already, go ahead and start your free trial for PaperPile. Download and install the Google Doc plugin.

Step 3: Insert a citation with PaperPile

PaperPile is powerful and useful, but just like every citation manager, it’s not perfect. Citation managers rely on a
community of users to curate and fix incorrect citations, especially for older or niche manuscripts that aren’t always
contained within automatically populated databases.

Inserting citations in PaperPile is quick and easy. There are two ways to do it. First, you can open PaperPile as a sidebar
in Google Docs by going to the Add-ons tab and clicking “Manage Citations”.

1.3. Module 1: Plant Genomics 31

https://www.mendeley.com/download-desktop-new/
https://www.zotero.org/
https://paperpile.com/app
https://paperpile.com/pricing/
https://workspace.google.com/marketplace/app/paperpile/894076725911

American Campus Tree Genomes, Release 0.1

That opens up a panel to the right side where you can search for manuscripts using the title, DOI number or just general
search terms. Give it a shot — search for a citation for a paper you recently read, and try to insert it somewhere in the
document.

You can also add citations by using the Paperpile menu option. Paperpile >> Insert Citation.

When you’re ready to insert a list of formatted citations at the end of the document, we use “Format citations”. Whenever
we update citations in the text, or add new citations, we can refresh the final citation list at the end of the manuscript
by using “Format citations”. We can also pick our journal style using “Citation style”.

This is all part of “cleaning as we cook”. As you write, fill in the citation, and you’ll save yourself tons of time.

Task B: Cleaning up after ourselves

Last lab we discovered a few major issues with our data. In particular, a failed transfer of our fastq files truncated the
end.

Step 1: Rerun fastqc on the complete Toomers WGS dataset

Return to the previous lab if you have any trouble. Make sure to leave the results in ~/toomers-genome/
shotgun-dna/fastqc

Here are some tricks you can use to shove jobs into the background and keep them running silently. nohup is a command
that means “no hang up”. Output that would normally go to the terminal goes to a file called nohup. out, if it has not
already been redirected. Add in the ampersand (&) at the end to make sure the job goes into the background.

nohup fastqc -t 4 filename1 filename2 &

Remember how we can run fastq multi-threaded?

32 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

You can always check on the status of a job in the background by typing top. It is a task manager program, found in
many Unix-like operating systems, that displays information about CPU and memory utilization. Read more about top
here and how to interpret the CPU and memory usage of your jobs.

top

Press “q” to get out.

Mastering Content

MultiQC is a software tool that aggregates the results of many common bioinformatic analyses. As always, our goal is
to let computational tools do as much work as possible for us, especially for the annoying things: for example, how many
reads did we sequence, how many reads are clean, what is the alignment rate of every RNA-seq library we sequenced,
etc etc etc.

From the website: MultiQC is a reporting tool that parses summary statistics from results and log files generated by
other bioinformatics tools. MultiQC doesn’t run other tools for you – it’s designed to be placed at the end of analysis
pipelines or to be run manually when you’ve finished running your tools.

When you launch MultiQC, it recursively searches through any provided file paths and finds files that it recognises. It
parses relevant information from these and generates a single stand-alone HTML report file. It also saves a directory
of data files with all parsed data for further downstream use.

Read the manual on how to install and run it on ~/toomers-genome. We will run MultiQC throughout the semester as
we run more programs to update major analyses.

Take note of a particularly important bit here — MultiQC uses python 3.7. MultiQC suggests that you make a new
Conda environment that runs python 3.7. Nifty!

conda create --name py3.7 python=3.7 conda activate py3.7
conda active py3.7
conda install -c bioconda -c conda-forge multiqc

1.4 Module 2: Planning a Genome Project

1.4.1 Lesson 1: Isolating DNA and RNA

2.1 Instructions

2.1 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

• A simple plant high-molecular-weight DNA extraction method

• Spectrophotometry for DNA purity

1.4. Module 2: Planning a Genome Project 33

https://www.unixtutorial.org/commands/top
https://multiqc.info/
https://plantmethods.biomedcentral.com/articles/10.1186/s13007-020-00579-4
https://www.denovix.com/tn-130-purity-ratios-explained/

American Campus Tree Genomes, Release 0.1

2.1 Lesson

Learning Objectives

Vocabulary

Learning Material

Error: EMBED LECTURE VIDEO HERE

Error: ADD TEXT TRANSCRIPTION OF VIDEO HERE

2.1 Lab Exercises

Overview

In this lab, we will learn how to clean your raw Illumina data of adapters and poor quality sequence.

We will do four major things in this lab:

• Learn what Illumina adapter sequences are

• Learn how Illumina quality scores work on the NovaSeq6000

• Run fastp to clean your data

• Calculate sequencing coverage for a sample

“If everything was perfect, you would never learn and you would never grow.” -Beyoncé

Task A

Step 1: Learn the structure of an Illumina sequence run

Illumina sequencing is based on the chemistry of SBS – “sequencing-by-synthesis”. In the next lecture you’ll learn
more about the intricacies of SBS and how the molecules sit on the machine’s flow cell. In short, SBS chemistry
uses four fluorescently labeled nucleotides to sequence up to billions of clusters on the flow cell surface in parallel,
much like Sanger Sequencing. During each sequencing cycle, a single labeled deoxynucleoside triphosphate (dNTP)
is added to the nucleic acid chain, one base at a time. A’s are added, then imaged, T’s are added, then imaged, C’s
are added, then imaged, then G’s are added. and imaged. After all 4 bases have been added, all molecules on the
flow cell should be advanced by one nucleotide of length, or 1 sequencing cycle. The dNTPs contain a reversible
blocking group that serves as a terminator for polymerization, so after each dNTP incorporation, the fluorescent dye
is imaged to identify the base and then enzymatically cleaved to allow incorporation of the next nucleotide. Since all
four reversible terminator-bound dNTPs (A, C, T, G) are present as single, separate molecules, natural competition
minimizes incorporation bias, which can be problematic with serial nucleotide incorporation chemistry used in Sanger
sequencing. Base calls are made directly from signal intensity measurements during each cycle, greatly reducing raw
error rates compared to other technologies.

Check out this short, 5 minute video for a quick primer on Illumina sequencing.

For more than a decade, 4 different dye terminator colors were used (T = green, G = blue, C = Red, A = yellow),
just like Sanger sequencing. This is called 4-color sequencing. Illumina realized they could speed up sequencing by

34 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

Fig. 5: Image Source: Illumina Website

1.4. Module 2: Planning a Genome Project 35

https://www.illumina.com/content/dam/illumina-marketing/images/science/v2/web-graphic/sbs-tech-web-graphic.jpg

American Campus Tree Genomes, Release 0.1

eliminating two of the colors altogether, reducing the sequencing time by 50%. This is called two-color sequencing.
There are only two colored fluorophores used now:

If a base lights up green, it’s a T. If a base lights up red, it’s a C. If a base lights up yellow, it’s A — meaning they mixed
red and green fluorphores together for the “A” cycle. If it’s G, there’s no fluorophore, meaning it’s a dark cycle and no
light was emitted. The axis of the figure below show the intensity of each base, measured in green versus red intensity.

Fig. 6: Image Source Illumina Website

Fig. 7: Image Source EC Seq Bioinformatics Website

Do you have two colors or four colors in Illumina?

Step 2: Learn how quality scores in Illumina work

No sequencing technology is perfect (yet), and errors occur at some frequency. It’s important to understand the source
of these kinds of errors, because 1) they impact the downstream analyses you want to do, and 2) so you can account for
them. Illumina has the lowest per-base error rate of any modern sequencing platform, which is why it is often employed
for variant calling during resequencing.

The reasons for errors during the base calling process are diverse. In most cases the emitted light signal of a cluster
is disturbed. In this context, it is important to know that the detected light signal is always a sum of single signals
from thousands of molecules within one cluster. Typical reasons for a polluted cluster light signal can be phasing
(see quality decrease over illumina reads), overlapping clusters and not uniform clusters because of an error in the
cluster generation (bridge amplification) step. This can often lead to a gradual degradation of signal over the course of
sequencing a molecule. Because the probability of errors fluctuates and differs from cluster to cluster and from cycle
to cycle it is necessary and useful to indicate a quality for each called and recorded base expressed in a score.

36 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://www.illumina.com/content/dam/illumina-marketing/images/science/v2/web-graphic/sbs-redgreen-web-graphic.jpg
https://www.ecseq.com/support/ngs/img/2_and_4_channels_SBS_system.gif
https://www.ecseq.com/support/ngs/why-does-the-sequence-quality-decrease-over-the-read-in-illumina.html

American Campus Tree Genomes, Release 0.1

Fig. 8: On the left, a perfect sequencing run with many molecules acting the same within a single cluster. On the right,
an example of “phasing”, where the dNTP blocker nucleotide isn’t cleaved, polluting the light signal in the cluster.
Image Source EC Seq Bioinformatics Website

In the last few years, especially with the introduction of Illumina’s bigger machines like the NovaSeq6000, the data
produced by the machine is becoming unwieldy. One source of data bloating was that every single nucleotide of every
single read had a quality score attached to it. The quality score (Q score) with the attached probability of error (P_error)
was given a different ASCII code:

Fig. 9: Phred33 offset ASCII table.

Illumina’s solution to this issue is to not report the quality score of every single nucleotide. Instead, quality scores are
binned into 4 or 8 categories of qualities. See the table below for an example of how quality scores can be binned into
8 Q-score categories. In the example below, if a base has a quality score of 7, it gets changed to a “6”. This saves space
because when compression algorithms or formats (like gzip, bzip, .bam) compress data, repeated stretches of the same
byte (like a quality score bin value) can be very efficiently compressed, resulting in smaller file sizes. In practice, it
hasn’t really mattered much to us; binning actually saves us computational time when we trim the data and very few
people really needed to know the Q score of every single base.

1.4. Module 2: Planning a Genome Project 37

https://www.ecseq.com/support/ngs/img/phasing_illumina.png

American Campus Tree Genomes, Release 0.1

38 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

Task B

Many programs have been written to “clean” Illumina sequencing data. Some common examples are trimmomatic,
TrimGalore!, and my personal favorite, Fastp. Fastp is exceptionally fast, and the defaults are excellent. It will automat-
ically trim your fastq dataset with reasonable defaults, including automatically identifying and trimming the adapter
sequences that might be present in your data.

The structure of an Illumina-ready molecule for sequencing is below. The “insert” is your biological sequence (e.g. a
piece of DNA or RNA), flanked on both sides by “adapter” sequence that is required for binding to the flow cell. The
first read (R1) initiates sequencing at Primer 1, and reads through the insert sequence on the top strand. Depending on
the length of the insert, and the chosen sequencing read length, sometimes you can sequencing into the adapter on the
other side of the molecule (shown by the red dots). These adapter sequences at the 3 ends of reads need to be removed.
They are not true biological sequence!

Fig. 10: Image Source: QCFail.com Website

QC Fail Sequencing » Read-through adapters can appear at the ends of sequencing reads These issues are visible in the
fastqc plots, like the example below, which shows the Illumina Universal Adapter being present in a high frequency of
molecules starting ~35 nucleotides. The insert must be very short here:

Similarly, remember how chemistry issues like “phasing” can lead to signal degradation over time? Quality scores
often start to drop as the sequencing moves towards the 3 end of each molecule. This is normal, and we can detect this
in fastqc plots. Below is an example:

• Why does the per base sequence quality decrease over the read in Illumina?

• Does the Toomer’s Oak data display this trend? Let’s look at the fastqc plots you made.

Install fastp

Read the github page, and install fastp using Conda. Make sure you’re in your “toomers” environment (or whatever
you decided to name it).

There are many ways to run fastp to output cleaned reads. You can 1) stream the reads directly to the standard out, so
that you can pipe them into another program (e.g. a read aligner like BWA or bowtie), 2) write the cleaned reads to a
separate file (which takes up space), or 3) output nothing except for the cleaned read statistics. For this lab, we’ll do
#3. In the very near future future, since fastp is so quick to run, we will use the “streaming” option #1, and make use
of pipes. This saves us a lot of storage — do we need to keep a copy of the raw data, plus a copy of the cleaned data?
Not really*

Note: There are caveats here we will talk about in lab.

1.4. Module 2: Planning a Genome Project 39

http://www.usadellab.org/cms/?page=trimmomatic
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://github.com/OpenGene/fastp
https://sequencing.qcfail.com/wp-content/uploads/sites/2/2016/02/read_through_adapter.png

American Campus Tree Genomes, Release 0.1

Fig. 11: Image Source: QCFail.com Website

40 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://sequencing.qcfail.com/wp-content/uploads/sites/2/2016/02/adapter_content_plot.png

American Campus Tree Genomes, Release 0.1

Fig. 12: Image Source EC Seq Bioinformatics Website

Use the same raw Illumina whole genome shotgun data that you used in the last lab. read1 is the file that ends in R1,
and read2 is the file that ends in R2. Insert the correct path to the reads, either the raw data from /scratch or your
softlinked files in your own directory. The simplest way to run fastp to only generate a quality report of our data is:

fastp -i read1 -I read2
yeah, it's that easy.

Use the ampersand (&) to start this job in the background. Ask google or your classmates if you can’t remember how.
This job will take a few hours.

After the run has finished, run MultiQC in the ~/toomers-genome/ directory to aggregate your fastqc and fastp
results.

Mastering Content

What depth of coverage did I sequence to?

A question we often ask — “Did I sequence deeply enough?”.

Next-generation shotgun sequencing approaches require sequencing every base in a sample several times for two rea-
sons:

• You need multiple observations per base to come to a reliable base call.

• Reads are not distributed evenly over an entire genome, simply because the reads will sample the genome in a
random and independent manner. Therefore many bases will be covered by fewer reads than the average coverage,
while other bases will be covered by more reads than average. You need to account for this in your planning.

This is expressed by the coverage metric, which is the number of times a genome has been sequenced (the depth of

1.4. Module 2: Planning a Genome Project 41

https://www.ecseq.com/support/ngs/img/per_base_sequence_quality.png

American Campus Tree Genomes, Release 0.1

sequencing). For applications where you aim to sequence only a defined subset of an entire genome, like targeted
resequencing or RNA sequencing, coverage means the amount of times you sequence that subset. For example, for
targeted resequencing, coverage means the number of times the targeted subset of the genome is sequenced. In this
case, we want to know the sequencing coverage of the whole genome; in other words, how many times did we sequence
each nucleotide of the oak tree, on average?

The general equation for computing coverage is: - C = LN / G - C stands for coverage - G is the haploid genome length
- L is the read length - N is the number of reads

Assume that the diploid genome size of our Toomers Oak is 1.5 Gigabases. What coverage of Illumina read depth did
we sequence to?

1.4.2 Lesson 2: Data Types in Genomics

2.2 Instructions

2.3 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

• Illumina Sequencing Technology

• PAC Bio Seuqencing Primer

2.2 Lesson

Learning Objectives

Vocabulary

Learning Material

2.2 Lab Exercises

Overview

When you work on a genome project, you’ll be generating several kinds of raw data. In this lab, we will explore three
diverse data types in genomics: fasta, fastq, bam, and gff. There are many more, but we’ll focus on these for now.

We will do four major things in this lab:

• Dissect the headers of an Illumina fastq file (.fastq format)

• Align short reads to your Toomer’s chloroplast genome (.fasta + .bam)

• Explore the annotation (.gff) and alignments (.bam) in IGV

“If everything was perfect, you would never learn and you would never grow.” -Beyoncé

42 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://www.youtube.com/watch?v=6jf_6STEnI4
https://www.youtube.com/watch?v=1aqnLQ-nwYk

American Campus Tree Genomes, Release 0.1

Task A

Step 1: Dissect a fastq file

By now, you’ve interacted with fastq files in the class in different ways. Today let’s really dive into what a fastq file tell
us.

A FASTQ file normally uses four lines per sequence.

• Line 1 begins with a ‘@’ character and is followed by a sequence identifier and an optional description (like a
FASTA title line).

• Line 2 is the raw sequence letters.

• Line 3 begins with a ‘+’ character and is optionally followed by the same sequence identifier (and any description)
again.

• Line 4 encodes the quality values for the sequence in Line 2, and must contain the same number of symbols as
letters in the sequence.

Here’s a random read I chose from our fastq file:

@A00406:205:HGTFWDSX2:4:1101:14470:1157 1:N:0:GGTACCTT+GACGTCTT
ATTTAATACTTCGTTCAGTTAGATCTTAGTTACTGACTGGCGTTAAATAAGCTAAAATGATATTGTTTTGGTTTTCTTTTTTTAATTTTGAAATTAAAAGAAAATTAAAAAACTGTTATTAAAAAAAAAAAACATTTAGGGGAAGAACCCT
+
FF:FFFFFFFF:FFF:FFFFFFFFFFFF:FFFFF:FFFFFF:F,
→˓FFF,:F:FFFF

Let’s dissect the fastq entry, starting with the first line (a.k.a. the header):

@A00406 The unique instrument ID
205 The run ID
HGTFWDSX2 The flowcell ID
4 The flowcell lane (4 lanes / NovaSeq flowcell)
1101 Tile number within the flowcell lane
14470 X-coordinate of the cluster within the tile
1157 Y-coordinate of the cluster within the tile
1 For paired-end reads, is this read 1 or read 2
N Y if the read was filtered by the machine for poor quality, N if the read passed. see below
0 You can spike in PhiX to a sequence run as a control sequence. If this value ever reads “18”,

this means the read is matching to a control. Otherwise, 0.
GGTAC-
CTT+GACGTCTT

This is the barcode for this library. In our case, we performed dual indexing, where each
molecule has a unique i5 and i7 index sequence on both ends. The i5 and i7 8-nucleotide
index sequences are separated with a plus sign. i7 is the 3 adapter, and i5 is the 5 adapter.
i7 is read first, then i5.

Illumina sequencers perform an internal quality filtering procedure called chastity filter, and reads that pass this filter
are called PF for pass-filter. According to Illumina, chastity is defined as the ratio of the brightest base intensity
divided by the sum of the brightest and second brightest base intensities. Clusters of reads pass the filter if no more
than 1 base call has a chastity value below 0.6 in the first 25 cycles. This filtration process removes the least reliable
clusters from the image analysis results. (Source: GATK)

Note: What to look out for: When you get new data, always use

1.4. Module 2: Planning a Genome Project 43

https://gatk.broadinstitute.org/hc/en-us/articles/360035890991-PF-reads-Illumina-chastity-filter

American Campus Tree Genomes, Release 0.1

zcat <fastq.gz> | head

and check out the first few lines of the fastq file. Check the header for the correct barcode for a few samples. Sequencing
centers aren’t perfect, “stuff” happens, and just smart to spot check your data.

Discussion question: What do you notice about the barcodes in the first few entries of our fastq files?

Task B: Align reads to your chloroplast genome

Let’s run a very common bioinformatic task, and learn more about fasta, fastq, and bam files along the way. We are going
to align reads to a reference genome. In this case, the reads will be the PE150 WGS reads we’ve been working with, and
the reference will be the Toomer’s Oak chloroplast fasta you assembled and annotated. Alignment is sometimes called
“mapping”, e.g. “aligning reads to a genome” is the same as “mapping reads to a genome”. Here’s a broad overview
of what we’ll be doing:

Fig. 13: Image Source: Galaxy Project Website

Fastp took our two paired-end read files as input, cleaned them, and it can stream the output (cleaned reads) to another
program. How do we deal with the fact that 2 read files went into fastp, but only one stream can exit as output? There
is a flavor of fastq files called “interleaved”, where Read1 and Read2 are zippered together, like this:

Read1:

44 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://training.galaxyproject.org/training-material/topics/sequence-analysis/tutorials/mapping/tutorial.html

American Campus Tree Genomes, Release 0.1

Read2:

Interleaved:

BWA, the short read aligner we will use next, can recognize interleaved files.

Step 1: Install BWA

BWA is the Burrow-Wheeler Alignment (BWA) program. This is a powerful and fast aligner that works with both short
read (Illumina) and long-read (PacBio, Nanopore) data. Check out the Github page.

First, Install bwa and samtools using Conda. We’ll use BWA to align reads, then samtools to filter those reads and
produce a .bam file that records all of the read alignments and their locations on the reference.

Second, build a bwa index from your Option_1_toomers-cp.fasta assembly (or whatever you named it). BWA requires
building an index for your reference genome to allow it to more efficiently search the genome during sequence align-
ment:

bwa index Option_1_toomers-cp.fasta

Third, check out all the options for bwa mem, the aligner we’ll use. I’ve highlighted an important bit about interleaved
files:

1.4. Module 2: Planning a Genome Project 45

https://github.com/lh3/bwa
http://bio-bwa.sourceforge.net/bwa.shtml

American Campus Tree Genomes, Release 0.1

Next, we want to set up a series of pipes to stream our data from fastp >> bwa >> .bam alignment file. I noticed
something funny, though — when I checked our version of fastp, it says 0.12.4. But the Github version says it’s on
0.22.0 ! We really need the –stdout option, since that’s how we’ll stream the cleaned reads into BWA for alignment.
But the older version of fastp doesn’t have that option! I wonder if there’s some incompatibilities we didn’t know about,
since we’re all using a new VM with perhaps different underlying software than we’re used to. . .

Here’s how we can install a specific version of something on Conda

conda install -c bioconda fastp=0.22.0

46 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

Failed! Okay. Let’s problem solve. We could try and install updated versions of libgcc and zlib, but these are more
complex compilers that many programs rely on. Is there another way to run the latest version of fastp without having
to install anything?

Remember the difference between interpreted code and compiled code? Sometimes developers will provide the pre-
compiled binaries. The fastp developers do! We can download and run precompiled binaries without installing any-
thing. Problem solved.

Before you download the binaries, let’s create a new folder called “bin” inside of toomers-genome, where we will keep
any scripts and programs we accumulate throughout the course. Follow their instructions and download fastp binaries
into your toomers-genome/bin/ directory. Here’s what my entire directory organization looks like now:

1.4. Module 2: Planning a Genome Project 47

https://github.com/OpenGene/fastp/#or-download-binary-only-for-linux-systems-httpopengeneorgfastpfastp

American Campus Tree Genomes, Release 0.1

Step 2: String together a set of pipes

Let’s test fastp and see if it can stream the output to the stdout (standard out) so that we can pipe it into BWA for
alignment. The github page told me everything I needed to know. Here’s how I usually test things like this:

~/toomers-genome/bin/fastp \
-i /scratch/JLGI_PCRfree_1_1_GGTACCTT_Quercus_virginiana_Toomers_I1126_L4_R1.fastq.gz \
-I /scratch/JLGI_PCRfree_1_1_GGTACCTT_Quercus_virginiana_Toomers_I1126_L4_R2.fastq.gz \
--stdout | head

Success.

Note: Notice in the command-line above a \ character is used. This allows us to split and run a long command across
multiple lines which makes it easier to read. You can do this with any command, just be sure there are no spaces after
the \ character. It must always be followed by a new line.

Okay, now let’s string it all together and pipe the output of fastp (cleaned reads) as the input for bwa (to align reads to
the chloroplast), and then output a .bam file.

~/toomers-genome/bin/fastp \
-i /scratch/JLGI_PCRfree_1_1_GGTACCTT_Quercus_virginiana_Toomers_I1126_L4_R1.fastq.gz \
-I /scratch/JLGI_PCRfree_1_1_GGTACCTT_Quercus_virginiana_Toomers_I1126_L4_R2.fastq.gz \
--stdout | bwa mem -t 3 -p Option_1_toomers-cp.fasta - | samtools view -F4 -Sb >␣

→˓chloro_alignment.bam

There are three parts to this command, let’s break them down:

1. First, we called fastp to clean our raw paired-end fastq data. We used the –stdout flag to output the cleaned
reads to the STDOUT, meaning they can be streamed into another program.

2. We piped the output into BWA. We specified the -p option so bwa knew that the fastq data was interleaved, then
we gave it out indexed chloroplast fasta assembly, and we told bwa that the input files were coming from the
STDIN through a pipe by using “-” as the input file.

3. The output of BWA is an uncompressed SAM file with a .sam extension that contains information about every
read that bwa processed, whether or not it aligned, and reports the location it maps to in the reference genome.
Check out the linked guide to learn more about .sam format, and its compressed counterpart, .bam. These .sam
files are BIG since theyre uncompressed. And they include information about EVERY read, even the ones that
don’t align to the reference. Remember, we’re aligning total DNA reads against a chloroplast, so only ~5% of
our reads will align to the chloroplast reference. We can use some flags of samtools to filter out unmapped reads
(-F4) and that we are feeding it a SAM file but want to output a compressed BAM file (-Sb). We’ll spend a full
day on samtools soon, but here’s a quick primer.

48 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://github.com/OpenGene/fastp
https://genome.sph.umich.edu/wiki/SAM

American Campus Tree Genomes, Release 0.1

4. Output the filtered .bam file to a new file called chloro_alignment.bam. Call it whatever you want!

Mastering Content

String it all together and visualize your .bam file in IGV

How do I visualize these .bam format read alignments against my reference chloroplast genome? IGV is a powerful
alignment viewer. Download and install it on your computer. Download your chloroplast fasta assembly, the .bam
alignment file, and the .bai index file to your computer.

Sort your bam file to make it easier to process by putting the reads in order
along each fasta entry. Output a sorted .bam file to "chloro_alignment.sort.bam"
using 4 threads (-@ 4).
samtools sort -o chloro_alignment.sort.bam -@ 4 chloro_alignment.bam

Index your bam file so IGV can read it
samtools index chloro_alignment.sort.bam

Get some basic stats on how many reads aligned
samtools flagstat chloro_alignment.sort.bam

In IGV, load your reference chloroplast. It can be loaded by clicking on Genomes >> Load Genome from File.

Then you can drag and drop your .bam file into the main window and it will load the alignments. Here’s a great video
from IGV to get you started:

If you haven’t already, go back to your GE-SEQ annotation of the chloroplast and download the .gff file of annotations.
Drag and drop that gff into the main window to load your gene annotations and explore. It will take a while to load
because there are so many reads. I wonder if there’s a way to downsample our .bam file to reduce the number of reads. . .
(can you find a solution?)

Poke around IGV and we’ll talk about it in class and over group chat throughout the week. Have fun!

1.4.3 Lesson 3: Measuring Genome Complexity

2.3 Instructions

2.3 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

• Kew C-Value database

2.3 Lesson

Learning Objectives

Vocabulary

Learning Material

1.4. Module 2: Planning a Genome Project 49

https://software.broadinstitute.org/software/igv/download
https://software.broadinstitute.org/software/igv/download
https://www.youtube.com/watch?v=E_G8z_2gTYM
https://www.youtube.com/watch?v=E_G8z_2gTYM
https://cvalues.science.kew.org/

American Campus Tree Genomes, Release 0.1

Fig. 14: IGV Screenshot

2.3 Lab Exercises

Overview

In this lab, we will learn how to use raw Illumina sequencing reads to genome complexity: genome size, heterozygosity
size, and ploidy.

We will do three major things in this lab:

• Learn what kmers are

• Generate kmer frequencies with Jellyfish

• Run Jellyfish on our dataset

“If everything was perfect, you would never learn and you would never grow.” -Beyoncé

Task A:

Step 1: What is a k-mer?

Today we’ll explore the power of k-mers and their application to genome sequencing.

K-mers are all possible substrings length k of a sequence string. A sequence string can refer to an Illumina read, a
PacBio read, a gene assembly, a genome assembly, or any other string of nucleotides. We can search for kmers of any
length k.

50 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

For a given sequence string length L, there are L – K + 1 possible k-mers in that string. In the example below, we have
a sequence of length (L) = 7: ACTGGCT. To find all possible k-mers of length 3 (3-mers) in that string:

Fig. 15: Image Source: K-mer analysis with python

In this example, all possible k-mers were unique and appeared only once. When k-mers appear more than once, we can
count their frequency, e.g. 3-mer “ACT” appears 33 times in the string.

Step 2: Calculate all possible 21-mers in our dataset

First, make a new directory in shotgun-data/ called kmer/. My tree directory looks like this now:

1.4. Module 2: Planning a Genome Project 51

https://voorloopnul.com/blog/kmer-analysis-with-python/diagram1.png

American Campus Tree Genomes, Release 0.1

Next, install Jellyfish using Conda.

I left a reduced dataset of just 10,000 lines of your Toomer’s Oak data in /scratch/ for us to play around with:

/scratch/test-kmer.fastq

Check out the help page for jellyfish count using

jellyfish count -help

52 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://anaconda.org/bioconda/jellyfish

American Campus Tree Genomes, Release 0.1

There are just a couple options we need to invoke, -m (what kmer size do we want, -s (how much memory do we want
to use to store the kmers), and take note that we can also multi-thread it with -t. We use -C to count k-mers on both
strands of DNA (top and bottom).

Here’s how to run jellyfish to count all possible 4-mers in the test data:

jellyfish count -C -m 4 -s 10000000 /scratch/test-kmer.fastq > test.jf

The output is a compressed file called “mer_counts.jf” that is not human-readable. But we can query this file in many
ways. For example

Get some stats on the k-mers, including how many occur only once, how many
distinct k-mers exist, and how many total k-mers exist.
jellyfish stats mer_counts.jf

dump a fasta-like file with all the kmer's and their counts
jellyfish dump mer_counts.jf

Count the frequency of a specific 4-mer, e.g. ATTG
jellyfish query mer_counts.jf ATTG

On your own: Generate a kmer count of this test dataset for k=7 and count the number of k-mers ATTCGAG.

1.4. Module 2: Planning a Genome Project 53

American Campus Tree Genomes, Release 0.1

Task B

Next, we will use Jellyfish and GenomeScope to build a
kmer spectra.

A K-mer spectra is a graphical representation of a dataset showing how many short fixed length words (k-mers) appear
a certain number of times. The frequency of occurrence is plotted on the x-axis and the number of k-mers on the y-axis.
The k-mer spectra is composed of distributions representing groups of motifs at different frequencies in the sample,
plus biases. Given not too many biases, the shape of the distributions provides a useful set of properties describing the
biological sample, the sequencing process and the amount of useful data in the dataset.

Fig. 16: K-mer histogram. The x-axis refers to the k-mer depth D(k), which. . . Image Source: Jang-il Sohn, Jin-Wu
Nam, The present and future of de novo whole-genome assembly, Briefings in Bioinformatics, Volume 19, Issue 1,
January 2018, Pages 23–40, https://doi.org/10.1093/bib/bbw096

Sequencing errors occur randomly in Illumina sequencing. These will be represented in a kmer spectra as a high
frequency (high on y-axis) of k-mers that occur just a few times (low on X-axis).

Let’s review what heterozygosity looks like. In this example we have a diploid organism with two homologous chro-
mosomes (A and B) for chromosome 1. If we have two sequencing reads that hit both A and B alleles, and we break
up those reads into k-mers (the dark blue blocks), it looks like this:

54 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

http://qb.cshl.edu/genomescope/
https://academic.oup.com/bib/article/19/1/23/2339783
https://doi.org/10.1093/bib/bbw096

American Campus Tree Genomes, Release 0.1

The k-mers that span most of these two reads are identical, meaning we have two copies of every k-mer across most of
the read, representing the shared parts of both alleles (aka the “haploid” representation of the genome). Once we find
k-mers that span the mutation, however, we have k-mers that are unique to each allele (the “diploid” representation of
the genome). Consequently, these diploid k-mers are present at 1/2 coverage relative to the rest of the k-mers in the
read.

Fig. 17: Image Source: Mike Schatz

When you do this repeatedly across a diploid genome with shotgun Illumina reads, these kmer coverages can be used
to calculate the heterozygosity of an organism. The heterozygous k-mers (a) are at 50% depth (the peak on the left)
compared to the homozygous k-mers (the peak on the right). Comparing the relative heights of the diploid/heterozygous
peak on the left, to the homozygous/haploid peak on the right, allows you to calculate heterozygosity. Increasing
heterozygosity means that the left peak gets higher. X axis is coverage/depth of kmers, and the Y axis is the number of
unique kmers at that given coverage/depth.

1.4. Module 2: Planning a Genome Project 55

American Campus Tree Genomes, Release 0.1

These data also tell us genome size, but we’ll discuss that next lab.

Run Jellyfish as GenomeScope describes

GenomeScope can calculate heterozygosity for us, using shotgun sequencing reads. It tells us exactly how it wants to
be run:

Now, run Jellyfish count on the raw Toomer’s Illumina data, except remember that we only have access to 4 threads, so
change -t to 4:

56 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

http://qb.cshl.edu/genomescope/

American Campus Tree Genomes, Release 0.1

jellyfish count -t 4 -C -m 21 -s 500000000 /scratch/*.fastq.gz -o reads.jf

Mastering Content

If you run Jellyfish like this, you’ll get an error like this one:

Jellyfish can’t open a .fastq.gz file? Interesting. On your own and with your classmates, try and troubleshoot this
issue.

Hint: I wonder if the help page has some clues for us.

1.4.4 Lesson 4: Plotting Heterozygosity and Size

2.4 Instructions

2.4 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

2.4 Lesson

Learning Objectives

Vocabulary

Learning Material

2.4 Lab Exercises

Overview

In this lab, we will learn how to use the Jellyfish kmer counting output to plot complexity: genome size, heterozygosity
size, and ploidy.

We will do three major things in this lab:

• Generate a kmer histogram

• Run GenomeScope

• Interpret the output and make an assessment for the future of our project

“If everything was perfect, you would never learn and you would never grow.” -Beyoncé

1.4. Module 2: Planning a Genome Project 57

https://github.com/gmarcais/Jellyfish/tree/master/doc

American Campus Tree Genomes, Release 0.1

Task A

Step 1: Finish running Jellyfish

By now, your Jellyfish k-mer counting run should be finished. There’s one more step in order for us to run GenomeScope
– to export the kmer count histogram:

we only have 4 threads, so change -t to 4
jellyfish histo -t 4 reads.jf > reads.histo

if your jellyfish run hasn’t finished, I have left a copy of “reads.jf” in /scratch/

Note: There are some caveats that are important to remember. Extremely large (haploid size >>10GB) and/or very
repetitive genomes may benefit from larger kmer lengths to increase the number of unique k-mers. Accurate inferences
requires a minimum amount of coverage, at least 25x coverage of the haploid genome or greater, otherwise the model
fit will be poor or not converge. We have much higher coverage for our Toomer’s Oak genome, so we’re all set.

Task B

Next, we will use Jellyfish and GenomeScope to build a kmer spectra. Let’s dissect a few of these plots, first.

This is an example GenomeScope plot for a relatively low heterozygosity individual:

The big peak at 25 in the graph above is in fact the homozygous portions of the genome that account for the identical
21-mers from both strands of the DNA. The dotted line corresponds to the predicted center of that peak. The small
shoulder to the left of the peak corresponds to the heterozygous portions of the genome that accounts for different
21-mers from each strand of the DNA. The two dotted lines to the right of the main peak (at coverage = 25) are the
duplicated heterozygous regions and duplicated homozygous regions and correspond to two smaller peaks. The shape
of these peaks are affected by the sequencing errors and PCR duplicates.

58 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

http://qb.cshl.edu/genomescope/

American Campus Tree Genomes, Release 0.1

Fig. 18: Image Source: Bioinformatics Workbook

1.4. Module 2: Planning a Genome Project 59

https://isugenomics.github.io/bioinformatics-workbook/assets/images/genomescope/screen_shot_2017-02-16_at_7.31.20_am.png

American Campus Tree Genomes, Release 0.1

The terms in the plot are defined as:

• len: inferred total genome length

• uniq: percent of the genome that is unique (not repetitive)

• het: overall rate of heterozygosity

• kcov: mean kmer coverage for heterozygous bases. note the top of the peak will not intersect the kcov line
because of the over dispersion in real data

• err: error rate of the reads: average rate of read duplications

Calculating genome size: A genome size estimate is revised by summing the total n umber of k-mers, except pre-
sumptive sequencing errors identified as the far left part of the graph, and dividing by the 2*, the estimated coverage
for homozygous k-mers. GenomeScope did this math for you, and presents it at len at the top.

In other words: subtract out the sequence error kmers, and divide the remaining total kmers by the haploid peak
coverage.

On the other hand, here is an example of a relatively heterozygous individual (1.06%):

Estimating repeat content in a genome: Subtract 100-“uniq”. This will be the estimated % repetitive element content
in the genome.

60 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

Note the high diploid peak at ~25X coverage, compared to the haploid peak at 50X coverage.
We can expect ~1% of sites in this genome to be heterozygous. This will create some unique differences in the
way these two genomes will assemble with PacBio HiFi reads.

As you learned in the sequencing technology lesson, PacBio HiFi reads are highly accurate (>99%) and long (~20-
30kb). In the “low heterozygosity” example, we would likely assemble an “unphased” assembly, meaning that haplo-
types from the maternal and paternal chromosomes would be smashed together into a chimera.

On the other hand, for sufficiently heterozygous individuals, we can fully phase the maternal and paternal haplotypes
of a diploid organism. In other words, we can fully assemble each chromosome pair separately. This is what the actual
assembly graphs look like for “haplotype-resolved assembly construction”:

Run Jellyfish as GenomeScope describes

GenomeScope can be easily run by dragging/dropping your histogram file into the input box, change read length to
150, and click Submit.

1.4. Module 2: Planning a Genome Project 61

http://qb.cshl.edu/genomescope/

American Campus Tree Genomes, Release 0.1

Fig. 19: Image Source: PacBio Website

Fig. 20: Image Source: Cheng, H., Concepcion, G.T., Feng, X. et al. Haplotype-resolved de novo assembly using
phased assembly graphs with hifiasm. Nat Methods 18, 170–175 (2021). https://doi.org/10.1038/s41592-020-01056-5

62 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://www.pacb.com/wp-content/uploads/Phasing-to-seperate-material-and-paternal-haplotypes.jpg
https://www.nature.com/articles/s41592-020-01056-5
https://www.nature.com/articles/s41592-020-01056-5
https://doi.org/10.1038/s41592-020-01056-5

American Campus Tree Genomes, Release 0.1

Mastering Content

Based on your new genome size estimation, calculate the estimated coverage of Illumina PE150 reads that we sequenced.
Edit the appropriate section in the manuscript. Fill in Supplemental Table 1 that includes information about the number
of raw read pairs, and the number of trimmed read pairs after you ran fastp.

1.5 Module 3: Genome Assembly

1.5.1 Lesson 1: Assembly Algorithms

3.1 Instructions

3.1 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

1.5. Module 3: Genome Assembly 63

American Campus Tree Genomes, Release 0.1

3.1 Lesson

Learning Objectives

Vocabulary

Learning Material

3.1 Lab Exercises

Overview

In this lab, we will learn the basics of working with PacBio HiFi (CCS) reads.

We will do three major things in this lab:

• Explore the format of raw PacBio HiFi data

• Sanity check our data using NCBI BLAST

“If everything was perfect, you would never learn and you would never grow.” -Beyoncé

Task A

Step 1: Explore the format and do a sanity check

Let’s review the basics of PacBio HiFi sequencing, otherwise known as CCS (Circular Consensus Sequencing). If you
need a quick refresher on PacBio HiFi sequencing, here’s a quick 2 minute clip. The premise of PacBio HiFi is that
PacBio sequencing has an inherent ~8% error rate per molecule. However, if you keep rolling the circular template
around the ZMW, you can generate 10-20+ passes (subreads) of that single molecule. The subreads can then be aligned
and used to build a consensus HiFi read that is >99% accurate, depending on how many subread passes it contains.

In this class, we generated two PacBio HiFi flow cells worth of data. Each flow cell produces a .fastq.gz file. The
raw PacBio HiFi data for Toomer’s Oak is in /scratch with two files:

• m64103_210818_191603.fastq.gz

• m64103_210825_210414.fastq.gz

First, explore the data a little bit. This is just a regular fastq file — four lines, except the lines are much longer than an
Illumina fastq file. As a reminder, to explore just the first read:

zcat /scratch/m64103_210818_191603.fastq.gz | head -n 4

I like to do sanity checks on my data. Is this really the species I think it is? BLAST is a simple way to check. BLAST is
an alignment and search algorithm that is widely used: it will become part of your everyday toolkit. NCBI uses BLAST
in a way that allows you to search against the entirety of the collection; that is, you can search any sequence against
every nucleotide in their database (which is a lot). Copy a chunk of sequence, e.g. 10 lines or more, and copy/paste it
into the white box saying “Enter Query Sequence”. Change the “Program Selection: Optimize For. . . ” to “somewhat
similar sequences (blastn)”. Then press BLAST.

64 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch

American Campus Tree Genomes, Release 0.1

Fig. 21: Advantages of HiFi reads for variant discovery and genome assembly - Speaker Deck

1.5. Module 3: Genome Assembly 65

American Campus Tree Genomes, Release 0.1

Phew! Most of the top hits are Quercus species or related.

Mastering Content

Your first job: Use any tool to 1) calculate the total number of bases sequenced, and 2) based on your GenomeScope
genome size estimate, calculate the PacBio sequencing coverage. Use google and your classmates. Remember: you
have total freedom. Install a useful piece of software if you find one. This is the essence of computational biology.

Insert your answer as a comment into the Google Doc: How many GB of sequencing data did we generate, and what
X coverage of our estimated genome size did we sequence?

Bonus: Can you find a way to plot the read length distribution? Is there a piece of software that already exists?

1.5.2 Lesson 2: Building a Draft Genome

3.2 Instructions

3.2 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

66 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

3.2 Lesson

Learning Objectives

Vocabulary

Learning Material

3.2 Lab Exercises

Overview

In this lab, we will learn the basics of the hifiasm assembler, and launch an assembly with our PacBio HiFi data.

We will do two major things in this lab:

• Discuss the basics of haplotype-aware genome assembly

• Launch a hifiasm assembly

“Be for real, don’t be a stranger” - Spice Girls

Task A:

Step 1: What is haplotype-aware assembly?

Diploid genomes contain two copies of every chromosome. We call each of these copies a haplotype. Our new goal
for genome assembly is to produce a haplotype-resolved assembly. Take the example below: two chromosome hap-
lotypes, one from the maternal contribution and the other from the paternal contribution. Over the last decade, many
genome assemblies have been produced that smash the two haplotypes together, switching between maternal/paternal
haplotypes in a single chromosome representation of the assembly. In other words, these chromosome assemblies are
incomplete.

Nowadays, we have better data that is longer and more accurate. Given sufficient heterozygosity in a sample, we can
phase the chromosome haplotypes. In other words, we can produce two genome assemblies for every diploid genome.

Fig. 22: Image Source: PacBio Website

1.5. Module 3: Genome Assembly 67

https://www.pacb.com/blog/ploidy-haplotypes-and-phasing/

American Campus Tree Genomes, Release 0.1

One issue is that without some additional information from the two parents of a diploid individual, we don’t often know
which haplotype comes from the maternal versus paternal lineage. That is, unless you can also sequence the genomes
of the parents! Here’s an example:

Okay, let’s review the basics of PacBio hifiasm assembler. Hifiasm leverages both the long PacBio reads, and k-mers
derived from those reads, to identify 1) errors in the PacBio data, and 2) putative heterozygous allele sites in the data.
First, it effectively recapitulates what you did with GenomeScope: it builds a k-mer distribution from the raw reads to
identify a homozygous and heterozygous peak and their coverages.

68 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

Fig. 23: (a) Two parents constitute four haplotypes, including shared sequences in both parents (solid lines) and se-
quences unique to one parent (dashed lines). The offspring inherits a recombined haplotype from each parent (blue,
paternal; red, maternal). (b) Short-read sequencing of the parents identifies unique length-k subsequences (k-mers),
which can be used to infer the origin of heterozygous alleles in the offspring’s diploid genome. (c) Trio binning sim-
plifies assembly by first partitioning long reads from the offspring into paternal and maternal sets on the basis of these
k-mers. Each haplotype is then assembled separately without the interference of heterozygous variants. Unassignable
reads are homozygous and can be assigned to both sets or assembled separately. (d) The resulting assemblies represent
genome-scale haplotypes and accurately recover both point and structural variation. Image Source: Koren, S., Rhie, A.,
Walenz, B. et al. De novo assembly of haplotype-resolved genomes with trio binning. Nat Biotechnol 36, 1174–1182
(2018). https://doi.org/10.1038/nbt.4277

1.5. Module 3: Genome Assembly 69

https://www.nature.com/articles/nbt.4277
https://doi.org/10.1038/nbt.4277

American Campus Tree Genomes, Release 0.1

70 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

Then, hifiasm builds an OLC graph that finds a path through heterozygous alleles — they look like bubbles in the graph
below. Hifiasm can produce two kinds of assemblies — primary + alt (left), or a phased haplotype 1 + haplotype 2
assembly. The “primary” assembly is the best path for one haplotype per contig. The “alt” is the alternative haplotype.

In this class, we generated two PacBio HiFi flow cells worth of data. Given our computational resources on the Virtual
Machines (4 threads, 32 GB RAM) we can only use so much data as input. So I’ve subsetted the data to be smaller, so
that it can still run on our VMs. I subsetted the data to 20 Gigabases (Gb)

data in /scratch # toomers.20G.subset.fastq.gz

Check out the hifiasm github page. Install the software on your own in your ~/toomers-genome/bin/ directory (or
whatever you named it). Here’s the example for how to assemble heterozygous genomes:

Assemble heterozygous genomes with built-in duplication purging
hifiasm -o HG002.asm -t32 HG002-file1.fq.gz HG002-file2.fq.gz

Before running hifiasm, read the tutorial first: https://hifiasm.readthedocs.io/en/latest/pa-assembly.html#pa-assembly

Remember that you only have 4 threads, so adjust -t accordingly. Launch your job using the toomers.20G.subset.
fastq.gz HiFi reads.

Mastering Content

After your assembly finishes:

1. The assembly file that we’ll focus on is the primary contig assembly. But it’s in a .gfa format. . . .Find a solution
on google to convert “toomers.subset.gfa.bp.p_ctg.gfa” to a .fasta file.

2. Then use the assemblathon_stats.pl script to calculate basic statistics about your assembly. What is the total size,
what is the contig N50?

So I have an Assembly. . . Now What?

Step 1: Understand the output

Hifiasm outputs a handful of files:

1.5. Module 3: Genome Assembly 71

https://hifiasm.readthedocs.io/en/latest/pa-assembly.html#pa-assembly
https://www.molecularecologist.com/2017/03/29/whats-n50/

American Campus Tree Genomes, Release 0.1

Fig. 24: Orange and blue bars represent the reads with heterozygous alleles carrying local phasing information, while
green bars come from the homozygous regions without any heterozygous alleles. In the phased string graph, a vertex
corresponds to the HiFi read with the same ID, and an edge between two vertices indicates that their corresponding
reads are overlapped with each other. Hifiasm first performs haplotype-aware error correction to correct sequence
errors but keep heterozygous alleles, and then builds a phased assembly graph with local phasing information from
the corrected reads. Only the reads coming from the same haplotype are connected in the phased assembly graph.
With complementary data providing global phasing information, hifiasm generates a completely phased assembly for
each haplotype from the graph. Hifiasm also can generate an unphased primary assembly only with HiFi reads. This
unphased primary assembly represents phased blocks (regions) that are resolvable with HiFi reads, but does not pre-
serve phasing information between two phased blocks. Image Source: Cheng, H., Concepcion, G.T., Feng, X. et al.
Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods 18, 170–175 (2021).
https://doi.org/10.1038/s41592-020-01056-5

72 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://doi.org/10.1038/s41592-020-01056-5

American Campus Tree Genomes, Release 0.1

Let’s go over some of this terminology, first. The PacBio manual is quite helpful here:

For your assembly, using just the HiFi reads, you produced an assembly like on the left. Just the primary contigs:

1.5. Module 3: Genome Assembly 73

https://www.researchgate.net/profile/Loubna-Youssar/post/Contig-vs-Unitig/attachment/5c1cd1353843b006754cbf55/AS%3A706241223487493%401545392437445/download/PacBio_Hybrid_Assembly_Practical.pdf

American Campus Tree Genomes, Release 0.1

Fig. 25: Image Source: Cheng, H., Concepcion, G.T., Feng, X. et al. Haplotype-resolved de novo assembly using
phased assembly graphs with hifiasm. Nat Methods 18, 170–175 (2021). https://doi.org/10.1038/s41592-020-01056-5

Step 2: Get the basic stats.

You should have run assemblathon_stats.pl on your “toomers.subset.gfa.bp.p_ctg.fasta” assembly. It reports a handful
of statistics, both on the contigs and the scaffolds. We’ll talk about the difference between these two things in class. In
short, scaffolds have gaps (NNNNNNNN) of unknown length that connect contigs together. Contigs are contiguous,
meaning no gaps.

Molecular Ecologist describes N50 in a simple way: Imagine that you line up all the contigs in your assembly in the
order of their sequence lengths (Fig. 1a). You have the longest contig first, then the second longest, and so on with the
shortest ones in the end. Then you start adding up the lengths of all contigs from the beginning, so you take the longest
contig + the second longest + the third longest and so on — all the way until you’ve reached the number that is making
up 50% of your total assembly length. That length of the contig that you stopped counting at, this will be your N50
number.

Step 2: Figure out the lengths of contigs

Here’s another one of those one-liners that I keep around in my back pocket for things like this. Change “assembly.fasta”
to whatever your assembly is called.

cat assembly.fasta \
| awk '$0 ~ ">" {if (NR > 1) {print c;} c=0;printf substr($0,2,100) "\t"; } $0 !~ ">"

→˓{c+=length($0);} END { print c; }' \
| awk '{print $1,$3}' \
| sort -nk 2

You can copy/paste this into Excel or Google Sheets if that helps. How many haploid chromosome does Q. virginiana
have? How many large contigs do we have? Wow !

74 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://doi.org/10.1038/s41592-020-01056-5
https://www.molecularecologist.com/2017/03/29/whats-n50/

American Campus Tree Genomes, Release 0.1

Fig. 26: Image Source: Molecular Ecologist

Step 3: Check out the assembly produced with ALL of the data, using the Hi-C integrated build

When you add in Hi-C data to the assembly process, hifiasm is allowed to use an additional data type to phase the two
haplotypes. I’ve run the exact same command as you all, adding both flow cells worth of data, plus the Hi-C data, and
started a hifiasm run. Just like the assembly on the right side:

The output that matters the most to us, the two phased haplotype fasta files, can be found in scratch:

hifiasm.hic.gfa.hic.hap1.p_ctg.fasta

hifiasm.hic.gfa.hic.hap2.p_ctg.fasta

First, we want to see how similar these two assemblies are in terms of length.

Next, how different are they in terms of structural variations? Assemblytics is a nifty online GUI that can build dotplots
that compare two reference genome assemblies. Download and install MUMMER (https://sourceforge.net/projects/
mummer/files/mummer/3.23/).

If you use Conda, make sure you download MUMMER3 and NOT MUMMER4, or else everything will break.

I keep this dotplot reference handy for how to interpret dotplots that compare a Reference versus a Query.

1.5. Module 3: Genome Assembly 75

https://www.molecularecologist.com/2017/03/29/whats-n50/
http://assemblytics.com/
https://sourceforge.net/projects/mummer/files/mummer/3.23/
https://sourceforge.net/projects/mummer/files/mummer/3.23/

American Campus Tree Genomes, Release 0.1

Fig. 27: Image Source: Cheng, H., Concepcion, G.T., Feng, X. et al. Haplotype-resolved de novo assembly using
phased assembly graphs with hifiasm. Nat Methods 18, 170–175 (2021). https://doi.org/10.1038/s41592-020-01056-5

Assessing haplotypes

Step 1: Run Assemblytics

How similar are our two haplotypes? Which haplotype do we want to move forward with for scaffolding with Hi-C?
Assemblytics is a nifty and quick way to quickly build dot plots that compare to sequences (or sets of sequences, e.g.
in fasta files).

A dot plot is a graphical method that allows the comparison of two biological sequences and identify regions of close
similarity between them. It is probably the oldest way of comparing two sequences [Maizel and Lenk, 1981].

Dot plot are two dimensional graphs, showing a comparison of two sequences. The principle used to generate the dot
plot is: The top X and the left y axes of a rectangular array are used to represent the two sequences to be compared.

Calculation: Matrix - Columns = residues of sequence 1 - Rows = residues of sequence 2.

A dot is plotted at every co-ordinate where there is similarity between the bases.

76 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://doi.org/10.1038/s41592-020-01056-5

American Campus Tree Genomes, Release 0.1

Fig. 28: Image Source: GalaxyProject Training Material

1.5. Module 3: Genome Assembly 77

https://galaxyproject.github.io/training-material/topics/assembly/images/dotplot.png

American Campus Tree Genomes, Release 0.1

What about an example with longer sequences? Plus repeats!

78 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

Simple dot plots get too noisy when comparing every single nucleotide in a string. The solution is to compare windows
of strings.

Install MUMMER and run assemblytics, just as the online instructions tell you to.

Depending on how you installed it, you might run into some problems.

Setting the window size of matches

We use the -l 100 and -c 500 options for Assemblytics, per the online manual. Check out the nucmer manual for
what these options mean:

1.5. Module 3: Genome Assembly 79

American Campus Tree Genomes, Release 0.1

-l 100 means that a minimum match between two sequence strings must be at least 100 nucleotides. -c 500 means
that we must have several overlapping matches that equal at least 500 nucleotides. Only alignments matching these two
parameters will be output. This filters out quite a bit of noise, especially in our case, since the two haplotypes should
be fairly similar (~1.5% heterozygous).

80 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

1.5.3 Lesson 3: Scaffolding Algorithms

3.3 Instructions

3.3 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

• Genome Assembly and Haplotyping with Hi-C

3.3 Lesson

Learning Objectives

Vocabulary

Learning Material

3.3 Lab Exercises

Overview

In this lab, we will learn the basics of Hi-C, and how to QC your data, and scaffold a genome.

We will do two major things in this lab:

• Discuss the basics of Hi-C

• QC your Hi-C data to assess the quality of the long-range links

• Align Hi-C data to your haplotype-resolved assembly

• Explore the contact matrix to resolve assembly issues

• Scaffold your haplotype assembly into chromosome pseudomolecules

Be for real, don’t be a stranger

—Spice Girls

Task A

Step 1: What is Hi-C sequencing?

How do we take assembled contigs and order/orient them into chromosomes? Hi-C is a powerful technique that captures
interactions of chromatin.

DNA is balled up in a cell, packed and positioned in a somewhat predictable way based on interactions with nucleosomes
that wrap DNA. There is order, to a degree.

DNA is wrapped around nucleosomes. Sometimes, DNA can form predictable loops, where distant pieces of DNA
interact. Enhancers that increase gene expression from a distance are sometimes found here. TADs (topologically-
associated domains) are regions of DNA that show a higher-than-expected level of chromatin interaction. That is, they
form associations more often than expected compared to the genome average. Different regions of chromosomes, or

1.5. Module 3: Genome Assembly 81

https://praxis.toolwire.com/alai/portal/portal_mycohort.jsp

American Campus Tree Genomes, Release 0.1

Fig. 29: Image Source: Doğan, E.S., Liu, C. Three-dimensional chromatin packing and positioning of plant genomes.
Nature Plants 4, 521–529 (2018). https://doi.org/10.1038/s41477-018-0199-5

82 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://doi.org/10.1038/s41477-018-0199-5

American Campus Tree Genomes, Release 0.1

different chromosomes altogether, can form different compartments in a nucleus of transcriptionally active (A) and
repressed (B) regions. That is, there is a hidden layer of organization within a nucleus that Hi-C can uncover.

We can cross-link DNA that is in close proximity, creating covalent bonds that “attach” two DNA strands together.
Usually, these two cross-linked regions are very closely linked on the same chromosome, with little physical distance
between them on the linear length of a chromosome. Sometimes, these two cross-linked strands can be from physi-
cally distant parts of the same chromosome. Typically, individual homologous chromosomes tend to occupy distinct
territories inside a nucleus, meaning that Hi-C can be used to phase DNA haplotypes in a genome assembly. In other
words, since we assembled two fairly distinct haplotypes in our assembly, we should be able to extend some of those
haplotype blocks using Hi-C.

Fig. 30: Image Source: Nucleus Biotech Website

We can use these short-range and long-range interactions within homologous chromosomes to scaffold our genome
assembly into full-length chromosomes, and to phase out the haplotypes.

(with hifiasm, we did both of these things at the same time using the hi-c integrated assembly option)

We can count up the number of interactions between DNA regions from the Hi-C sequencing, and build a giant matrix
of all those counts. We expect to find a large number of interactions between DNA that is close together on the same
chromosome, which leads to an overwhelmingly high signal along the diagonal of a dot plot. But, we also want these
longer-range interactions that allow us to link together contigs that are distant.

1.5. Module 3: Genome Assembly 83

https://nucleusbiotech.com/wp-content/uploads/2020/07/Hi-C_Overview.png

American Campus Tree Genomes, Release 0.1

Fig. 31: Image Source: Korbel, J., Lee, C. Genome assembly and haplotyping with Hi-C. Nat Biotechnol 31, 1099–1101
(2013). https://doi.org/10.1038/nbt.2764

84 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://doi.org/10.1038/nbt.2764

American Campus Tree Genomes, Release 0.1

Step 2: QC our Hi-C data

Phase Genomics is a popular company that does fee-for-service (contract) work on genome assembly and metagenomic
analyses. They provide kits where you can generate your own Hi-C data from your individual and do all the informatics
yourself, or you can send them frozen leaf material and they will do 100% of the work (library prep, sequencing, and
informatics/scaffolding).

First, we want to check to see how good our Hi-C data is. That is, are there short-range AND long-range interactions
occurring, that will help us scaffold our genome? Phase Genomics provides a helpful QC pipeline and scripts that can
quickly tell us the quality of our data, given only a few million reads, and a reference genome of something very closely
related or a draft genome.

From Phase Genomics:

“The best way to know if a Hi-C library worked is to look at how much long-range signal is in it. There are also several
metrics which correlate with a suspicious library, such as a high number of PCR duplicates or a large number of reads

1.5. Module 3: Genome Assembly 85

https://phasegenomics.com/

American Campus Tree Genomes, Release 0.1

which align to the same position in the genome (this happens when there are very short fragments in the library due
for example to two restriction sites being very close together). Our QC script measures these quantities and makes a
recommendation about the library based on the result.”

https://phasegenomics.github.io/2019/09/19/hic-alignment-and-qc.html

You should have bwa and samtools installed already, but if not, use Conda to install them. I have left a 1 million read
subset of the Hi-C data in /scratch.

Let’s run it on hap1 (/scratch/hifiasm.hic.gfa.hic.hap1.p_ctg.fasta). The R1 and R2 files start with toomers.omni-
c.2M.subset.*

Hint: You can also speed up bwa by multi-threading it. . . .

Then, follow the instructions for installing Phase Genomics’ hic_qc program with Conda: https://github.com/
phasegenomics/hic_qc

1.5.4 Lesson 4: Interacting with Hi-C Maps

3.4 Instructions

3.4 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

3.4 Lesson

Learning Objectives

Vocabulary

Learning Material

3.4 Lab Exercises

Overview

In this lab, we will learn the basics of interacting with Juicebox and .hic files to manually correct errors with automated
Hi-C scaffolding.

We will do two major things in this lab:

• Learn the basics of Juicebox

• Interact with Human ENCODE maps

• Load the Toomer’s haplotype1 and haplotype2 Hi-C maps

Be for real, don’t be a stranger

—Spice Girls

86 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://phasegenomics.github.io/2019/09/19/hic-alignment-and-qc.html
https://github.com/phasegenomics/hic_qc
https://github.com/phasegenomics/hic_qc

American Campus Tree Genomes, Release 0.1

Task A

Step 1: Working with Hi-C maps

How do we interact with these Hi-C maps, that often contain hundreds of millions, or billions, of chromatin-chromatin
interactions?

Juicebox is an excellent set of tools to interact with these maps. Juicebox allows you to visually investigate the contact
matrix of all chromatin-chromatin interactions. This contact matrix can be produced using several programs that take
raw Hi-C reads and map them to a reference genome, such as Juicer and HiC-Pro. There are additional packages that can
attempt to scaffold a reference genome, as we want to do here. These include SALSA, Juicer/3D-DNA, INSTAGRAAL,
and more.

There is also a desktop version of Juicebox, which is the one I use the most.

There are additional suites of software that interact with these contact matrices to call features in the data, such as
long-range chromatin loops, and short-distance contact domains. Arrowhead can call these contact domains (TADs)
that interact with each other more than expected by chance, and HICCUPS can call these long-range loops (highlighted
in blue squares).

The best way to learn is to dive in. Today we’ll focus on using Juicebox, an interactive way to work with Hi-C maps
and explore them. First, watch this high-level video from the Juicebox developers:

Juicebox web is a cloud-based web app that allows us to look at and share Hi-C maps with each other. Open up Juicebox
web and poke around a little bit before moving on.

1.5. Module 3: Genome Assembly 87

https://github.com/aidenlab/Juicebox
https://github.com/aidenlab/Juicebox/wiki/Download
https://www.aidenlab.org/juicebox/

American Campus Tree Genomes, Release 0.1

Fig. 32: An example contact matrix from Arabidopsis thaliana. Notice how there are 5 obvious chromosomes?

88 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

Step 2: Load a Hi-C contact matrix

On the Juicebox web app, you should see something like this:

Juicebox web allows you to look at two Hi-C contact matrices at the same time, which will be nifty for us soon. But for
now, go to “Load Map -> Juicebox Archive”. Juicebox has a lot of hi-c maps from diverse organisms already loaded.
Nifty! Is your organism of choice in there?

For instance, Search for “Arabidopsis”, and you should see two experiments:

Click the Rowley and Nichols et al. paper, and select “OK” at the bottom right of the window to load the map. Even
without annotations loaded, can you see 5 chromosomes?

1.5. Module 3: Genome Assembly 89

American Campus Tree Genomes, Release 0.1

Task B

Next, let’s follow the video + hands-on tutorial for exploring Human ENCODE Hi-C data. By the end of these 4 tutorial
videos, you should know how to 1) explore raw HiC maps, 2) visualize two maps at the same time, 3) Load annotations,
4) share your map.

Loading maps

Loading Annotations

Comparing two maps

Sharing maps

Mastering Content

Now that you know how to use Juicebox.js to explore two maps at the same time, this is the ideal scenario for us to
explore our two haplotype .hic contact matrices at once. I used SALSA to map our raw Hi-C data to each of the two
haplotypes for scaffolding into chromosomes.

The .hic format data will be available in /scratch ASAP (it is still running!)

Anyone like Tetris? Here’s an example of how someone uses Hi-C maps to fix a genome, and order/orient contigs into
chromosomes —

We’ll be doing this with toomers!

Finding mis-assemblies

Now comes the hard part: How do we find and correct mis-assemblies in the Hi-C data to produce our final haplotype
assemblies.

It turns out that SALSA2 performed poorly on our data. I ran a more intensive,
but usually more accurate, scaffolding program called Juicer/3D-DNA.

I’ve left the raw results in /scratch/hic-scaff/

There are two files per haplotype:

• .hic map: hifiasm.hic.gfa.hic.hap1.p_ctg.rawchrom.hic

• .assembly file describing raw chromosomes: hifiasm.hic.gfa.hic.hap1.p_ctg.rawchrom.assembly

Download these two files per haplotype to your laptop, and load these maps into Juicebox — the Desktop version.

Load the .hic map for haplotype1 using File->Open. Then load the .assembly file using Assembly->Import Map As-
sembly. You should see a contact map that looks like this:

90 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

Chromosomes are outlined in blue, contigs outline in green. There are strong inter-chromosome interactions, or in
other words, the chromosomes form strong square blocks. Fiddle around with the knobs on Juicebox to get acquainted;
change the normalization (e.g. I often use “Balanced” normalization), and pull the slider on “Color Range” all the
way to the maximum. The contact map looks pretty excellent, for the most part: there are strong, within-chromosome
interactions, that appear as a strong diagonal line.

For a quick primer on how to manually edit genomes, watch this Aiden lab video from Olga, who wrote Juicebox.
Afterwards, I’ll walk you through one of these manual edits to break a chromosome.

Juicer thinks there are 11 chromosomes, and that’s not right. Do you see where we should make the break, and split a
chromosome into two? Zoom into the 6th chromosome by double-clicking it.

1.5. Module 3: Genome Assembly 91

American Campus Tree Genomes, Release 0.1

To create a break in the chromosomes, drag your mouse close to the gap and you’ll see a right angle appear:

92 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

Click your mouse at that right-angle gap, and you’ll see the chromosome split into 2.

Now it’s looking better! We have 12 chromosomes.

1.5. Module 3: Genome Assembly 93

American Campus Tree Genomes, Release 0.1

Now we can zoom in fine-scale and look at the contigs more deeply. There’s always more than meets the eye. Zoom
in one chromosome 1. There is a lot of trash in this contig, at the very beginning of the assembly, in the very top left
corner. Zoom in more!

94 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

All of these little tiny contigs need to moved to the trash, or “debris” as it’s called in Juicebox.

1.5. Module 3: Genome Assembly 95

American Campus Tree Genomes, Release 0.1

Hold shift and then drag your mouse to include ALL of these tiny little contigs. They’ll turn black, and be surrounded
by a faint yellow box. Right click one of the boxes, and select “Move to debris”. Voila.

96 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

And just like that, you’ve made your first chromosome edit! It should look like this now.

1.5. Module 3: Genome Assembly 97

American Campus Tree Genomes, Release 0.1

Make your way through every chromosome, and just like Olga does in her instructional video, find mis-assemblies
where the chromosomes look incorrectly placed. Here’s an example on chromosome 11, that looks very much like
Olga’s example in her Youtube video: Can you fix chromosome 11? That piece at the end looks like it’s in the wrong
place. . .

98 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

Make your way through every chromosome. Create manual edits where necessary. To save your edits, use Assembly-
>Export Assembly.

Before class on Wednesday, create a folder in our shared google drive and leave your edits for both haplotypes in the
drive.

1.5. Module 3: Genome Assembly 99

American Campus Tree Genomes, Release 0.1

1.5.5 Lesson 5: Assessing Completeness

3.5 Instructions

3.5 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

• BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs

• Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies

3.5 Lesson

Learning Objectives

Vocabulary

Learning Material

3.5 Lab Exercises

In this lab, we will learn the basics of assessing the completeness of a draft assembly.

We will do two major things in this lab:

• Run assemblytics to compare haplotype1 and haplotype2 of our phased assembly, to identify any major issues

• Run BUSCO to identify core, conserved genes in the assembly, and objectively assess its quality

“Be for real, don’t be a stranger” - Spice Girls

Task A

There are several ways that we can objectively measure the quality of our genome assembly. One of these methods is
by searching for super-conserved, core eukaryotic genes. There are genes that exist in nearly all plant genomes that
have very conserved functions, sometimes called “housekeeping genes”, that tend to 1) evolve slowly, 2) maintain their
gene structure over time, 3) be present in low or single copy.

BUSCO is a software tool that has built databases of these conserved, core eukaryotic genes for different lineages on
the tree of life. For plants, a variety of databases exist, including e.g. all Viridiplantae, or focusing more finely in one
some lineages, e.g. Solanaceae family (potato, tomato).

Just like the manual tells us, install BUSCO with Conda

conda install -c conda-forge -c bioconda busco=5.2.2

However, the install will fail, and tell you that BUSCO needs python3. Oops. It even tells us this in the manual!

100 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://academic.oup.com/bioinformatics/article/31/19/3210/211866
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02134-9
https://busco.ezlab.org/

American Campus Tree Genomes, Release 0.1

Fig. 33: Image Source: BUSCO Website

1.5. Module 3: Genome Assembly 101

https://busco.ezlab.org/home/busco_sampling.png

American Campus Tree Genomes, Release 0.1

Third-party components

A full installation of BUSCO requires Python 3.3+ (2.7 is not supported from v4 onwards), BioPython, pandas,
tBLASTn 2.2+, Augustus 3.2, Prodigal, Metaeuk, HMMER3.1+, SEPP, and R + ggplot2 for the plotting compan-
ion script. Some of these tools are necessary only for analysing certain type of organisms and input data, or for specific
run modes.

Luckily you’ve already made a conda environment that runs python3. Activate it:

conda activate py3.7

Then reinstall.

Next, follow the BUSCO user guide. First, explore the possible databases.

busco --list-datasets

Most of these databases are not useful to you. There are just a handful of plant databases:

We’ll just use “eudicots_odb10”.

Then check out the BUSCO options, using the -h flag

-i FASTA FILE, --in FASTA FILE
Input sequence file in FASTA format. Can be an assembled genome or␣

→˓transcriptome (DNA), or protein sequences from an annotated gene set.
-o OUTPUT, --out OUTPUT

Give your analysis run a recognisable short name. Output folders␣
→˓and files will be labelled with this name. WARNING: do not provide a path
-m MODE, --mode MODE Specify which BUSCO analysis mode to run.

There are three valid modes:
- geno or genome, for genome assemblies (DNA)
- tran or transcriptome, for transcriptome assemblies (DNA)
- prot or proteins, for annotated gene sets (protein)

-l LINEAGE, --lineage_dataset LINEAGE
Specify the name of the BUSCO lineage to be used.

--auto-lineage Run auto-lineage to find optimum lineage path
(continues on next page)

102 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

(continued from previous page)

--auto-lineage-prok Run auto-lineage just on non-eukaryote trees to find optimum␣
→˓lineage path
--auto-lineage-euk Run auto-placement just on eukaryote tree to find optimum lineage␣
→˓path
-c N, --cpu N Specify the number (N=integer) of threads/cores to use.
-f, --force Force rewriting of existing files. Must be used when output files␣
→˓with the provided name already exist.
-r, --restart Continue a run that had already partially completed.
-q, --quiet Disable the info logs, displays only errors
--out_path OUTPUT_PATH

Optional location for results folder, excluding results folder␣
→˓name. Default is current working directory.
--download_path DOWNLOAD_PATH

Specify local filepath for storing BUSCO dataset downloads
--datasets_version DATASETS_VERSION

Specify the version of BUSCO datasets, e.g. odb10
--download_base_url DOWNLOAD_BASE_URL

Set the url to the remote BUSCO dataset location
--update-data Download and replace with last versions all lineages datasets and␣
→˓files necessary to their automated selection
--offline To indicate that BUSCO cannot attempt to download files
--metaeuk_parameters METAEUK_PARAMETERS

Pass additional arguments to Metaeuk for the first run. All␣
→˓arguments should be contained within a single pair of quotation marks, separated by␣
→˓commas. E.g. "--param1=1,--param2=2"
--metaeuk_rerun_parameters METAEUK_RERUN_PARAMETERS

Pass additional arguments to Metaeuk for the second run. All␣
→˓arguments should be contained within a single pair of quotation marks, separated by␣
→˓commas. E.g. "--param1=1,--param2=2"
-e N, --evalue N E-value cutoff for BLAST searches. Allowed formats, 0.001 or 1e-03␣
→˓(Default: 1e-03)
--limit REGION_LIMIT How many candidate regions (contig or transcript) to consider per␣
→˓BUSCO (default: 3)
--augustus Use augustus gene predictor for eukaryote runs
--augustus_parameters AUGUSTUS_PARAMETERS

Pass additional arguments to Augustus. All arguments should be␣
→˓contained within a single pair of quotation marks, separated by commas. E.g. "--
→˓param1=1,--param2=2"
--augustus_species AUGUSTUS_SPECIES

Specify a species for Augustus training.
--long Optimization Augustus self-training mode (Default: Off); adds␣
→˓considerably to the run time, but can improve results for some non-model organisms
--config CONFIG_FILE Provide a config file
-v, --version Show this version and exit
-h, --help Show this help message and exit
--list-datasets Print the list of available BUSCO datasets

The minimum requirements to run BUSCO are

1.5. Module 3: Genome Assembly 103

American Campus Tree Genomes, Release 0.1

Launch a BUSCO run using. . .

• -i genome.fasta

• -m genome

• -o haplotype1_busco (or haplotype2_busco)

• -l eudicots_odb10

• -c 4

Task B

Run Assemblytics to compare both haplotypes

Now that we have two phased assemblies, one for each haplotype, we should do some sanity checks. Remember: once
you move on from this phase of a genome project, it is hard to “go back” and fix issues with the genome assembly.

You’ve run assemblytics before, so you should be familiar. This will take ~6 hours. Focus in particular on the synteny
dotplot that is produced. We’ll want to make sure our two haplotypes are largely contiguous with each other.

Note: just because a genome is highly heterozygous doesn’t mean that the two haplotypes will be structurally similar.
That is, there can certainly be large-scale structural rearrangements and variants that occur.

104 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

http://assemblytics.com/

American Campus Tree Genomes, Release 0.1

Mastering Content

After your BUSCO run has finished, use the “generate_plot.by” script from the user guide to construct a barplot of
both haplotypes that shows the number of Complete, Fragmented, Missing genes, like this:

Fig. 34: Image Source Busco Website

1.6 Module 4: Genome Annotation

1.6.1 Lesson 1: Genome Arithmetic

4.1 Instructions

4.1 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

• BedTools Manual

• BED Format

• Interactive Introduction to BedTools

1.6. Module 4: Genome Annotation 105

https://busco.ezlab.org/home/busco_plot.png
https://bedtools.readthedocs.io/en/latest/
https://bedtools.readthedocs.io/en/latest/content/general-usage.html
https://sandbox.bio/tutorials/?id=bedtools-intro&step=0

American Campus Tree Genomes, Release 0.1

4.1 Lesson

Learning Objectives

Vocabulary

Learning Material

4.1 Lab Exercises

Overview

In this lab, we will learn the basics of performing genome arithmetic, and operating on intervals.

We will do two major things in this lab:

• Work through an interactive bedtools tutorial from the Quinlan lab (who developed it)

• Walk through some examples of different file formats that bedtools can operate on

• Run Liftoff2 to lift-over gene annotations from the Q. rubra genome onto ours

“Be for real, don’t be a stranger” - Spice Girls

Task A

At the end of the day, a fasta file with our genome assembly is just a string of ATCG’s. We have to layer annotations
on top of that fasta file. These can be gene annotations (in .gff or .gtf format), repetitive element annotations (in .gff
format), RNA-seq alignments (in .bam format), RNA-seq expression counts (in .bed format), and more.

These annotation formats all have one thing in common: they are based on intervals of genomic coordinates that have
starts and stops. For instance, GeneA is on chromosome 4 at basepair location 21244 to 23299.

How can we start to interact with those annotations? Typically, you will need to overlap intervals of interest with
other features of the genome, again represented as intervals. For example, you may want to overlap transcription factor
binding sites with CpG islands or promoters to quantify what percentage of binding sites overlap with your regions
of interest. Overlapping mapped reads from high-throughput sequencing experiments with genomic features such as
exons, promoters, and enhancers can also be classified as operations on genomic intervals. You can think of a million
other ways that involve overlapping two sets of different features on the genome. For example,

• “What gene overlaps with this QTL peak?”

• “I need the 1 kb in the 5 upstream region of these 20 genes”

• “Which genes are within 500 nt of an LTR retrotransposon?”

All of these questions can be answered with bedtools, perhaps the most useful set of tools to answer questions regarding
genome arithmetic.

How bedtools intersect works with one or more files.

Work through this interactive Bedtools tutorial, based on the Quinlan lab (who wrote bedtools).

106 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://sandbox.bio/tutorials/?id=bedtools-intro&step=1

American Campus Tree Genomes, Release 0.1

Fig. 35: Image source: BedTools documentation

1.6. Module 4: Genome Annotation 107

American Campus Tree Genomes, Release 0.1

Task B

Explore data formats

Bedtools can operate on a number of different formats of files., e.g. vcf, bam, bed, fasta, at the same time. Having
some knowledge of these formats is necessary.

Format 1: BED (Browser Extensible Data) format provides a flexible way to define the data lines that are displayed
in an annotation track. BED lines have three required fields and nine additional optional fields. The number of fields
per line must be consistent throughout any single set of data in an annotation track. The order of the optional fields is
binding: lower-numbered fields must always be populated if higher-numbered fields are used.

The first three required BED fields are:

• chrom – The name of the chromosome (e.g. chr3, chrY, chr2_random) or scaffold (e.g. scaffold10671).

• chromStart – The starting position of the feature in the chromosome or scaffold. The first base in a chromosome
is numbered 0.

• chromEnd – The ending position of the feature in the chromosome or scaffold. The chromEnd base is not
included in the display of the feature, however, the number in position format will be represented. For example,
the first 100 bases of chromosome 1 are defined as chrom=1, chromStart=0, chromEnd=100, and span the bases
numbered 0-99 in our software (not 0-100), but will represent the position notation chr1:1-100. Read more here.
chromStart and chromEnd can be identical, creating a feature of length 0, commonly used for insertions. For
example, use chromStart=0, chromEnd=0 to represent an insertion before the first nucleotide of a chromosome.

After these 3 mandatory columns, you can append all kinds of additional information to these locations. You can add
gene names, strand (+ or -), gene counts (expression), and so on.

Format 2: GFF (General Feature Format) consists of one line per feature, each containing 9 columns of data, plus
optional track definition lines.

Fields must be tab-separated. Also, all but the final field in each feature line must contain a value; “empty” columns
should be denoted with a ‘.’

• seqname – name of the chromosome or scaffold; chromosome names can be given with or without the ‘chr’
prefix. Important note: the seqname must be one used within Ensembl, i.e. a standard chromosome name or an
Ensembl identifier such as a scaffold ID, without any additional content such as species or assembly. See the
example GFF output below.

• source – name of the program that generated this feature, or the data source (database or project name)

• feature – feature type name, e.g. Gene, Variation, Similarity

• start – Start position* of the feature, with sequence numbering starting at 1.

• end – End position* of the feature, with sequence numbering starting at 1.

• score – A floating point value.

• strand – defined as + (forward) or – (reverse).

• frame – One of ‘0’, ‘1’ or ‘2’. ‘0’ indicates that the first base of the feature is
the first base of a codon, ‘1’ that the second base is the first base of a codon, and so on.

• attribute – A semicolon-separated list of tag-value pairs, providing additional information about each feature.

What to look out for: 0-based vs 1-based coordinates

Do we start at 0, or start at 1?

The example above shows (an imaginary) first seven nucleotides of sequence on chromosome 1:

• 1-based coordinate system - Numbers nucleotides directly

108 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://genome.ucsc.edu/FAQ/FAQtracks#tracks1
http://genome.ucsc.edu/blog/the-ucsc-genome-browser-coordinate-counting-systems/

American Campus Tree Genomes, Release 0.1

Fig. 36: Image source: Next-Generation Sequencing Analysis Resources

• 0-based coordinate system - Numbers between nucleotides

Fig. 37: Image source:

0-based: BED, BAM, BCF

1-based: GTF, GFF, SAM, VCF, BLAST, GenBank/EMBL

Bedtools recognizes these differences and inter-converts for you.

1.6. Module 4: Genome Annotation 109

https://learn.gencore.bio.nyu.edu/

American Campus Tree Genomes, Release 0.1

1.6.2 Lesson 2: Classifying Repeats

4.2 Instructions

4.2 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

• GyDB

• Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2

• Repeat Masker

• The genomic ecosystem of transposable elements in maize

4.2 Lesson

Learning Objectives

Vocabulary

Learning Material

4.2 Lab Exercises

Overview

This is a longer lab that takes us away from the command line.

We will do two major things in this lab:

• Learn how to use the Repeatexplorer2 portal on Galaxy

• Walk through the RepeatExplorer2 Nature Protocols paper and subsample shotgun data from Toomers Oak

• Upload data to Galaxy

• Run RepeatExplorer2 to characterize TE content in Toomers Oak

Task A

We can use Illumina paired-end shotgun genome data to predict how repetitive a genome is. Plant genomes are filled
with repetitive DNA — but do we need to sequence an entire plant genome to figure out what percent of a genome is
filled with repeats?

No. Imagine you have a 3 billion piece puzzle. Even if you only take 10,000 random pieces of that puzzle, you
can roughly see what the puzzle should be. That premise underlies how RepeatExplorer2 works. Even with a small
subsample, 1% coverage of the genome, you can nicely estimate the repetitive content of a plant genome. In short, it
works by taking a small sample of reads from your genome of interest, clustering them together, and trying to reconstruct
consensus sequences of repetitive elements. By doing this, you can estimate what total % of a genome is repetitive,
and break down individual superfamilies of transposable elements.

110 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://gydb.org/index.php?title=Main_Page
https://www.nature.com/articles/s41596-020-0400-y
https://www.repeatmasker.org/
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009768

American Campus Tree Genomes, Release 0.1

Here is the main RepeatExplorer2 site to start from: https://galaxy-elixir.cerit-sc.cz/

First, Register (don’t re-use any known username or password of yours!) : https://perun.cesnet.cz/elixir2/registrar/
?vo=elixir-cz&group=repeatExplorer

Then you’ll have access to the Galaxy server: https://repeatexplorer-elixir.cerit-sc.cz/galaxy/

Second, follow along with the Nature Protocols paper describing how to run RepeatExplorer2. You’ll be using the
Toomers Oak PE150 PCR-free shotgun data, though. I’ve also left this pdf in the class resources for this module.

https://www.nature.com/articles/s41596-020-0400-y.epdf

1.6.3 Lesson 3: Annotating Repeats

4.3 Instructions

4.3 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

Error: LTR Assembly Index link is missing

• EDTA Manuscript

• LTR Assembly Index

1.6. Module 4: Genome Annotation 111

https://galaxy-elixir.cerit-sc.cz/
https://perun.cesnet.cz/elixir2/registrar/?vo=elixir-cz&group=repeatExplorer
https://perun.cesnet.cz/elixir2/registrar/?vo=elixir-cz&group=repeatExplorer
https://repeatexplorer-elixir.cerit-sc.cz/galaxy/
https://www.nature.com/articles/s41596-020-0400-y.epdf
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1905-y

American Campus Tree Genomes, Release 0.1

4.3 Lesson

Learning Objectives

Vocabulary

Learning Material

4.3 Lab Exercises

Overview

This lab will walk us through the process of annotating a genome for repeats.

We will do two major things in this lab:

• Learn how to run EDTA, an all-in-one transposon annotation pipeline

• Build an insertion time distribution for LTR elements of major superfamilies

“Be for real, don’t be a stranger” - Spice Girls

Task A

Now that we have a fully phased genome assembly, we can begin the process of annotation. There are two major phases
to annotation: repetitive elements, and genes. First, we need to annotate repetitive elements so that we can mask them
before annotating genes, effectively “hiding” the repeats from gene annotation and prediction programs. Repeats are
the most frustrating aspect of annotating a genome. Not only are they ubiquitous, and typically different between every
species, if you do a poor job of repeat annotation, your gene annotation will also be poor. Remember: repetitive
elements contain genes!

EDTA is an all-in-one repeat annotation pipeline. It runs a handful of programs that identify different kinds of repet-
itive elements, such as LTR_FINDER, LTRharvest, Generic Repeat Finder, and HelitronScanner. Then it filters these
annotations to build a custom repeat library, and creates a .gff file of repeat annotations for the genome assembly. Here’s
an overview of the pipeline:

The EDTA workflow First, read the github wiki page, then create a new Conda environment for EDTA:

conda create -n EDTA
conda activate EDTA

Then install via Conda.

conda install -c bioconda -c conda-forge edta

. . . . This is taking forever, isn’t it? My install just hangs. I think it finishes in a few hours, but we don’t have that kind
of time to waste, do we? Sometimes Conda installs are just painfully slow.

Mamba was developed to beat this problem. Mamba is a reimplementation of the conda package manager in C++. It
allows for:

• parallel downloading of repository data and package files using multi-threading

• libsolv for much faster dependency solving, a state of the art library used in the RPM package manager of Red
Hat, Fedora and OpenSUSE

• core parts of mamba are implemented in C++ for maximum efficiency

112 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://github.com/oushujun/EDTA

American Campus Tree Genomes, Release 0.1

Fig. 38: Image Source: EDTA GitHub Page

1.6. Module 4: Genome Annotation 113

https://github.com/oushujun/EDTA/raw/master/development/EDTA%20workflow.png

American Campus Tree Genomes, Release 0.1

Use mamba to accelerate the installation:

conda install -c conda-forge mamba

mamba install -c conda-forge -c bioconda edta python=3.6 tensorflow=1.14 'h5py<3'

Test your installation by typing:

EDTA.pl -h

Task B

First, read some of the caveats of EDTA. It looks like all we need, at minimum, is just a genome file .fasta file. We
have two, one for each haplotype, so we will divide-and-conquer as a class. We’ll decide which half of the class takes
haplotype1 and which half takes haplotype2 when we meet.

It does mention that “make sure sequence names are short and simple”. Okay, I’ve taken care of this, and renamed our
.fasta headers to be “Qv1_chr1”, “Qv1_chr2”, etc.

Now, read the EDTA Usage section, and see if you can launch a full run on your own. Remember that you can use at
most 4 threads.

Mastering Content

Next, we want to produce some figures that describe the repeat landscape in the genome. In particular, we want to show
the percent sequence divergence of similar repeats, in order to describe any “bursts” of repeat expansion.

We’re not the first people using EDTA who want to do the same. Check out this Github Issues describing the same
thing: https://github.com/oushujun/EDTA/issues/92

If you’ve used R before, this should look somewhat familiar. Open the R terminal in your PRAXIS welcome page,
install the required packages (google if you don’t remember how.

1.6.4 Lesson 4: Annotating Genes with RNA-Seq

4.4 Instructions

4.4 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

– A beginner’s guide to eukaryotic genome annotation

114 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://github.com/mamba-org/mamba
https://github.com/oushujun/EDTA/issues/92
https://www.nature.com/articles/nrg3174

American Campus Tree Genomes, Release 0.1

4.4 Lesson

Learning Objectives

Vocabulary

Learning Material

4.4 Lab Exercises

Overview

This lab will walk us through the process of annotating a genome for genes using the BRAKER2 pipeline.

We will do three major things in this lab:

• Install BRAKER

• Collect all of the available Quercus peptides that exist, and align them to our haplotype references

• Run the BRAKER2 pipeline using orthologous gene evidence to train AUGUSTUS and build an annotation set

“Be for real, don’t be a stranger”` - Spice Girls

Task A

First, we need to produce a softmasked genome. Softmasked means we convert any repetitive region of the genome
to a lowercase letter. BRAKER2, our gene annotation pipeline, prefers softmasked genomes so it can “ignore” those
regions for gene annotation.

Bedtools has a tool that can do this for us. Using the the .gff3 you produced as part of EDTA, e.g. (toomers.hap1.
fasta.mod.EDTA.TEanno.gff3), run bedtools maskfasta with the -soft flag to create a softmasked genome fasta
file.

Task B

Next we will run the BRAKER2 pipeline to annotate genes in the reference haplotypes you have assembled. In the
absence of RNA-seq data, we will need to rely on closely related peptides for gene prediction. Luckily, there are three
other Quercus genomes that exist: lobata, robur, and rubra. We can leverage the gene annotations from these three
genomes, as well as the seemingly high degree of conservation across the Quercus genus, to train gene predictors and
build an annotation set.

First, read the BRAKER2 github page. We will be using “Pipeline C” that leverages orthologs of any evolutionary
distance to train AUGUSTUS.

You can install BRAKER2 with conda, with the caveat that it is sometimes a few versions behind. That will be fine for
us, though.

Create a new conda environment called “braker”, then install BRAKER2 using Conda.

First, collect the protein fasta annotations for Quercus rubra, robur, lobata. Make sure they’re proteins/peptides! Use
Phytozome and/or any other means you need to. Concatenate them into a single .fasta file, like this:

cat species1.fasta species2.fasta species3.fasta > quercus_proteins.fasta

1.6. Module 4: Genome Annotation 115

https://bedtools.readthedocs.io/en/latest/content/tools/maskfasta.html
https://github.com/Gaius-Augustus/BRAKER#fig5
https://anaconda.org/bioconda/braker2

American Campus Tree Genomes, Release 0.1

Fig. 39: Image Source: BRAKER GitHub Page

Then, run BRAKER2 using the “proteins from any evolutionary distance” pipeline. Make sure you use the softmask
flag!

1.6.5 Lesson 5: Quantifying Gene Expression

4.5 Instructions

4.5 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

4.5 Lesson

Learning Objectives

Vocabulary

Learning Material

116 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

https://github.com/Gaius-Augustus/BRAKER/raw/master/docs/figs/braker2-full.png

American Campus Tree Genomes, Release 0.1

4.5 Lab Exercises

1.7 Module 5: Comparative Genomics

1.7.1 Lesson 1: Identifying Synteny

5.1 Instructions

5.1 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

5.1 Lesson

Learning Objectives

Vocabulary

Learning Material

5.1 Lab Exercises

1.7.2 Lesson 2: Building Gene Families

5.2 Instructions

5.2 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

5.2 Lesson

Learning Objectives

Vocabulary

Learning Material

5.2 Lab Exercises

1.7.3 Lesson 3: Estimating a Gene Tree

5.3 Instructions

1.7. Module 5: Comparative Genomics 117

American Campus Tree Genomes, Release 0.1

5.3 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

5.3 Lesson

Learning Objectives

Vocabulary

Learning Material

5.3 Lab Exercises

1.7.4 Lesson 4: Aligning Resequence Data

5.4 Instructions

5.4 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

5.4 Lesson

Learning Objectives

Vocabulary

Learning Material

5.4 Lab Exercises

1.7.5 Lesson 5: Variant Calling

5.5 Instructions

5.5 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

118 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

American Campus Tree Genomes, Release 0.1

5.5 Lesson

Learning Objectives

Vocabulary

Learning Material

5.5 Lab Exercises

1.8 Module 6: Publishing Scientific Results

1.8.1 Lesson 1: Intro to R Programming

6.1 Instructions

6.1 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

6.1 Lesson

Learning Objectives

Vocabulary

Learning Material

6.1 Lab Exercises

1.8.2 Lesson 2: Plotting Genomic Data

6.2 Instructions

6.2 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

1.8. Module 6: Publishing Scientific Results 119

American Campus Tree Genomes, Release 0.1

6.2 Lesson

Learning Objectives

Vocabulary

Learning Material

6.2 Lab Exercises

1.8.3 Lesson 3: Using Gene Browsers

6.3 Instructions

6.3 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

6.3 Lesson

Learning Objectives

Vocabulary

Learning Material

6.3 Lab Exercises

1.8.4 Lesson 4: Making Data Public

6.4 Instructions

6.4 Resources

This page contains a list of resources that are referenced by this lesson or which may provide additional information
for the topic of this lesson.

6.4 Lesson

Learning Objectives

Vocabulary

Learning Material

6.4 Lab Exercises

120 Chapter 1. Course on Whole Genome Assembly and Annotation v0.1b

	Course on Whole Genome Assembly and Annotation v0.1b
	Introduction
	Learning Schedule
	Self-Instruction
	Schedule 1: Monday, Wednesday and Friday Meetings
	Schedule 2: Tuesday and Thursday Meetings

	Computational Requirements
	Requirements
	For the Course Sample Data Only
	For a Full Genome

	Options
	Praxis AI
	Workstations or Compute Cluster
	Set it up Yourself

	Software Requirements
	Sample Data
	Course Resources
	History
	Course Versions
	Assembled Genomes
	Malus x domestica WA38 (Cosmic Crisp © apple)
	Pyrus communis Anjou Pear

	Official Offerings in 2021
	Quercus virginiana Toomers (Live Oak)

	How to Contribute
	About the “Restructured Text” Format

	Need Help?

	Course Setup
	Computational Infrastructure
	Setup for Praxis AI (Cloud-Based)
	Setup on a SLURM Cluster
	Setup for a Stand-Alone Workstation Using Docker
	Setup for a Stand-Alone Workstation Without Docker

	Software Installation and Usage
	Software Installation: Praxis AI
	Software Installation: Conda
	Conda Installation
	Quick How-To
	Base Software Installation
	Additional Software Installation
	Braker2
	EDTA
	BUSCO

	Software Usage: Docker
	Docker or Singularity Installation
	How to Run Software with Docker
	How to Run Software with Singularity
	How to Run Docker in Interactive Mode
	Interactive Mode with Docker
	Interactive with Singularity

	Module 1: Plant Genomics
	Lesson 1: Introduction to Plant Genomics
	1.1 Instructions
	1.1 Resources
	1.1 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	1.1 Lab Exercises
	Overview
	Task A: Get comfortable on the command line
	Step 1. Where am I?
	Step 2. Make a new directory for this lab

	Task B: Download the Arabidopsis thaliana genome from TAIR
	Step 1. Download the genome for Arabidopsis thaliana
	Step 2. Let’s see what the genome looks like
	Step 3. View gene annotation sequences in a FASTA file

	Mastering Content
	Step 1
	Step 2

	Lesson 2: Introduction to Biological Computing
	1.2 Instructions
	1.2 Resources
	1.2 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	1.2 Lab Exercises
	Overview
	Task A: Download and run FASTQC
	Step 1. Use Conda to install a package
	Step 2. Download some Illumina data
	Step 3: Look at our fastq files

	Task B: Run FASTQC and assess the quality of some Illumina shotgun data
	Step 1: Check out the help options for fastqc
	Step 2: Download the results

	Mastering Content
	Step 1: Conda environments
	Step 2: Messy data
	Step 3: Compression

	Lesson 3: Compute Clusters and Programming Languages
	1.3 Instructions
	1.3 Resources
	1.3 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	1.3 Lab Exercises
	Overview
	Task A: Organize your directories and clean up
	Step 1. Project organization
	Step 2: Create symbolic links to the data

	Lesson 4: Writing a Scientific Manuscript
	1.4 Instructions
	1.4 Resources
	1.4 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	1.4 Lab Exercises
	Overview
	Task A
	Step 1: Get comfortable with Google Docs and Paperpile
	Step 2: Insert a citation with PaperPile
	Step 3: Insert a citation with PaperPile

	Task B: Cleaning up after ourselves
	Step 1: Rerun fastqc on the complete Toomers WGS dataset

	Mastering Content

	Module 2: Planning a Genome Project
	Lesson 1: Isolating DNA and RNA
	2.1 Instructions
	2.1 Resources
	2.1 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	2.1 Lab Exercises
	Overview
	Task A
	Step 1: Learn the structure of an Illumina sequence run
	Step 2: Learn how quality scores in Illumina work

	Task B
	Install fastp

	Mastering Content

	Lesson 2: Data Types in Genomics
	2.2 Instructions
	2.3 Resources
	2.2 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	2.2 Lab Exercises
	Overview
	Task A
	Step 1: Dissect a fastq file

	Task B: Align reads to your chloroplast genome
	Step 1: Install BWA
	Step 2: String together a set of pipes

	Mastering Content

	Lesson 3: Measuring Genome Complexity
	2.3 Instructions
	2.3 Resources
	2.3 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	2.3 Lab Exercises
	Overview
	Task A:
	Step 1: What is a k-mer?
	Step 2: Calculate all possible 21-mers in our dataset

	Task B
	Run Jellyfish as GenomeScope describes

	Mastering Content

	Lesson 4: Plotting Heterozygosity and Size
	2.4 Instructions
	2.4 Resources
	2.4 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	2.4 Lab Exercises
	Overview
	Task A
	Step 1: Finish running Jellyfish

	Task B
	Mastering Content

	Module 3: Genome Assembly
	Lesson 1: Assembly Algorithms
	3.1 Instructions
	3.1 Resources
	3.1 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	3.1 Lab Exercises
	Overview
	Task A
	Step 1: Explore the format and do a sanity check

	Mastering Content

	Lesson 2: Building a Draft Genome
	3.2 Instructions
	3.2 Resources
	3.2 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	3.2 Lab Exercises
	Overview
	Task A:
	Step 1: What is haplotype-aware assembly?

	Mastering Content
	So I have an Assembly… Now What?
	Step 1: Understand the output
	Step 2: Get the basic stats.
	Step 2: Figure out the lengths of contigs
	Step 3: Check out the assembly produced with ALL of the data, using the Hi-C integrated build

	Assessing haplotypes
	Step 1: Run Assemblytics

	Lesson 3: Scaffolding Algorithms
	3.3 Instructions
	3.3 Resources
	3.3 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	3.3 Lab Exercises
	Overview
	Task A
	Step 1: What is Hi-C sequencing?
	Step 2: QC our Hi-C data

	Lesson 4: Interacting with Hi-C Maps
	3.4 Instructions
	3.4 Resources
	3.4 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	3.4 Lab Exercises
	Overview
	Task A
	Step 1: Working with Hi-C maps
	Step 2: Load a Hi-C contact matrix

	Task B
	Mastering Content
	Finding mis-assemblies

	Lesson 5: Assessing Completeness
	3.5 Instructions
	3.5 Resources
	3.5 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	3.5 Lab Exercises
	Task A
	Third-party components

	Task B
	Run Assemblytics to compare both haplotypes

	Mastering Content

	Module 4: Genome Annotation
	Lesson 1: Genome Arithmetic
	4.1 Instructions
	4.1 Resources
	4.1 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	4.1 Lab Exercises
	Overview
	Task A
	Task B
	Explore data formats

	Lesson 2: Classifying Repeats
	4.2 Instructions
	4.2 Resources
	4.2 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	4.2 Lab Exercises
	Overview
	Task A

	Lesson 3: Annotating Repeats
	4.3 Instructions
	4.3 Resources
	4.3 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	4.3 Lab Exercises
	Overview
	Task A
	Task B
	Mastering Content

	Lesson 4: Annotating Genes with RNA-Seq
	4.4 Instructions
	4.4 Resources
	4.4 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	4.4 Lab Exercises
	Overview
	Task A
	Task B

	Lesson 5: Quantifying Gene Expression
	4.5 Instructions
	4.5 Resources
	4.5 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	4.5 Lab Exercises

	Module 5: Comparative Genomics
	Lesson 1: Identifying Synteny
	5.1 Instructions
	5.1 Resources
	5.1 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	5.1 Lab Exercises

	Lesson 2: Building Gene Families
	5.2 Instructions
	5.2 Resources
	5.2 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	5.2 Lab Exercises

	Lesson 3: Estimating a Gene Tree
	5.3 Instructions
	5.3 Resources
	5.3 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	5.3 Lab Exercises

	Lesson 4: Aligning Resequence Data
	5.4 Instructions
	5.4 Resources
	5.4 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	5.4 Lab Exercises

	Lesson 5: Variant Calling
	5.5 Instructions
	5.5 Resources
	5.5 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	5.5 Lab Exercises

	Module 6: Publishing Scientific Results
	Lesson 1: Intro to R Programming
	6.1 Instructions
	6.1 Resources
	6.1 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	6.1 Lab Exercises

	Lesson 2: Plotting Genomic Data
	6.2 Instructions
	6.2 Resources
	6.2 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	6.2 Lab Exercises

	Lesson 3: Using Gene Browsers
	6.3 Instructions
	6.3 Resources
	6.3 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	6.3 Lab Exercises

	Lesson 4: Making Data Public
	6.4 Instructions
	6.4 Resources
	6.4 Lesson
	Learning Objectives
	Vocabulary
	Learning Material

	6.4 Lab Exercises

